Author
Listed:
- Ganesh Babu
(University College Dublin)
- Aoife Gowen
(University College Dublin)
- Michael Fop
(University College Dublin)
- Isobel Claire Gormley
(University College Dublin)
Abstract
The use of hyperspectral imaging to investigate food samples has grown due to the improved performance and lower cost of instrumentation. Food engineers use hyperspectral images to classify the type and quality of a food sample, typically using classification methods. In order to train these methods, every pixel in each training image needs to be labelled. Typically, computationally cheap threshold-based approaches are used to label the pixels, and classification methods are trained based on those labels. However, threshold-based approaches are subjective and cannot be generalized across hyperspectral images taken in different conditions and of different foods. Here a consensus-constrained parsimonious Gaussian mixture model (ccPGMM) is proposed to label pixels in hyperspectral images using a model-based clustering approach. The ccPGMM utilizes information that is available on some pixels and specifies constraints on those pixels belonging to the same or different clusters while clustering the rest of the pixels in the image. A latent variable model is used to represent the high-dimensional data in terms of a small number of underlying latent factors. To ensure computational feasibility, a consensus clustering approach is employed, where the data are divided into multiple randomly selected subsets of variables and constrained clustering is applied to each data subset; the clustering results are then consolidated across all data subsets to provide a consensus clustering solution. The ccPGMM approach is applied to simulated datasets and real hyperspectral images of three types of puffed cereal, corn, rice, and wheat. Improved clustering performance and computational efficiency are demonstrated when compared to other current state-of-the-art approaches.
Suggested Citation
Ganesh Babu & Aoife Gowen & Michael Fop & Isobel Claire Gormley, 2025.
"A consensus-constrained parsimonious Gaussian mixture model for clustering hyperspectral images,"
Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 19(2), pages 323-359, June.
Handle:
RePEc:spr:advdac:v:19:y:2025:i:2:d:10.1007_s11634-025-00623-y
DOI: 10.1007/s11634-025-00623-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:19:y:2025:i:2:d:10.1007_s11634-025-00623-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.