IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v17y2023i4d10.1007_s11634-022-00531-5.html
   My bibliography  Save this article

Sparse correspondence analysis for large contingency tables

Author

Listed:
  • Ruiping Liu

    (Beijing Information Science and Technology University)

  • Ndeye Niang

    (Conservatoire national des arts et métiers)

  • Gilbert Saporta

    (Conservatoire national des arts et métiers)

  • Huiwen Wang

    (Beihang University)

Abstract

We propose sparse variants of correspondence analysis (CA) for large contingency tables like documents-terms matrices used in text mining. By seeking to obtain many zero coefficients, sparse CA remedies to the difficulty of interpreting CA results when the size of the table is large. Since CA is a double weighted PCA (for rows and columns) or a weighted generalized SVD, we adapt known sparse versions of these methods with specific developments to obtain orthogonal solutions and to tune the sparseness parameters. We distinguish two cases depending on whether sparseness is asked for both rows and columns, or only for one set.

Suggested Citation

  • Ruiping Liu & Ndeye Niang & Gilbert Saporta & Huiwen Wang, 2023. "Sparse correspondence analysis for large contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(4), pages 1037-1056, December.
  • Handle: RePEc:spr:advdac:v:17:y:2023:i:4:d:10.1007_s11634-022-00531-5
    DOI: 10.1007/s11634-022-00531-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-022-00531-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-022-00531-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nickolay T. Trendafilov & Sara Fontanella & Kohei Adachi, 2017. "Sparse Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 778-794, September.
    2. Jacques Savoy, 2015. "Text clustering: An application with the State of the Union addresses," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(8), pages 1645-1654, August.
    3. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    4. Shen, Dan & Shen, Haipeng & Marron, J.S., 2013. "Consistency of sparse PCA in High Dimension, Low Sample Size contexts," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 317-333.
    5. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    6. Vincent Guillemot & Derek Beaton & Arnaud Gloaguen & Tommy Löfstedt & Brian Levine & Nicolas Raymond & Arthur Tenenhaus & Hervé Abdi, 2019. "A constrained singular value decomposition method that integrates sparsity and orthogonality," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-39, March.
    7. Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.
    8. Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosember Guerra-Urzola & Niek C. Schipper & Anya Tonne & Klaas Sijtsma & Juan C. Vera & Katrijn Deun, 2023. "Sparsifying the least-squares approach to PCA: comparison of lasso and cardinality constraint," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 269-286, March.
    2. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    3. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    5. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    6. Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Working Papers halshs-02235543, HAL.
    7. Nerea González-García & Ana Belén Nieto-Librero & Purificación Galindo-Villardón, 2023. "CenetBiplot: a new proposal of sparse and orthogonal biplots methods by means of elastic net CSVD," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 5-19, March.
    8. Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
    9. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    10. Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," PSE Working Papers halshs-02235543, HAL.
    11. Van Deun, Katrijn & Lê, Trà T. & Malinowski, Jakub & Mols, Floortje & Schoormans, Dounya, 2025. "Regularized multigroup exploratory approximate factor analysis for easy analysis of complex data," OSF Preprints 9twbk_v1, Center for Open Science.
    12. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    13. Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.
    14. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    15. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    16. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
    17. Lars Eldén & Nickolay Trendafilov, 2019. "Semi-sparse PCA," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 164-185, March.
    18. Naoto Yamashita, 2024. "Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation," Psychometrika, Springer;The Psychometric Society, vol. 89(2), pages 411-438, June.
    19. Fang, Kuangnan & Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge, 2018. "Integrative sparse principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 1-16.
    20. Mitzi Cubilla-Montilla & Ana Belén Nieto-Librero & M. Purificación Galindo-Villardón & Carlos A. Torres-Cubilla, 2021. "Sparse HJ Biplot: A New Methodology via Elastic Net," Mathematics, MDPI, vol. 9(11), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:17:y:2023:i:4:d:10.1007_s11634-022-00531-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.