IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v226y2012i3p249-261.html
   My bibliography  Save this article

Coupling decomposition and truncation for the analysis of complex fault trees

Author

Listed:
  • S Contini
  • V Matuzas

Abstract

The analysis of large and complex fault trees is a very difficult task. The main limiting factor is an insufficient working memory. Several methods are available in literature to reduce the working memory requirement including modularization, the so-called ‘re-writing rules’, and truncation, i.e. the use of logic and/or probabilistic cut-offs to determine only the most important system failure modes. The truncation method is very effective, as it allows significant reductions in the computational effort; however, it implies the estimation of the truncation error, a problem not yet solved satisfactorily. Recently, a new method based on the decomposition of a complex fault tree into a set of mutually exclusive simpler fault trees was proposed. The decomposition is repeatedly applied until the generated trees are sufficiently simple to be exactly analysed with the available working memory. Theoretically, this approach would allow the exact analysis of fault trees of any complexity, but the related computation times are generally too high. The scope of this paper is to show how the combined application of decomposition and truncation constitutes a valuable method to analyse complex fault trees. The upper and lower bounds of the top-event probability, obtained by applying this method, are very close to the exact value and their difference depends on the dimension of the available working memory. Furthermore, the probabilistic quantification, including the importance measures of basic events, can easily be performed by properly combining the results from the independent analysis of all simpler fault trees. The developed methodology has been implemented in a software tool and successfully applied to the analysis of several complex fault trees, some of which are considered in this paper.

Suggested Citation

  • S Contini & V Matuzas, 2012. "Coupling decomposition and truncation for the analysis of complex fault trees," Journal of Risk and Reliability, , vol. 226(3), pages 249-261, June.
  • Handle: RePEc:sae:risrel:v:226:y:2012:i:3:p:249-261
    DOI: 10.1177/1748006X11401495
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X11401495
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X11401495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Contini, Sergio & Matuzas, Vaidas, 2011. "Analysis of large fault trees based on functional decomposition," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 383-390.
    2. Jung, Woo Sik & Yang, Joon-Eon & Ha, Jaejoo, 2005. "Development of measures to estimate truncation error in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 30-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matuzas, V. & Contini, S., 2015. "Dynamic labelling of BDD and ZBDD for efficient non-coherent fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 183-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matuzas, V. & Contini, S., 2015. "Dynamic labelling of BDD and ZBDD for efficient non-coherent fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 183-192.
    2. Vaidas Matuzas & Sergio Contini, 2012. "On the efficiency of functional decomposition in fault tree analysis," Journal of Risk and Reliability, , vol. 226(6), pages 635-645, December.
    3. Duflot, Nicolas & Bérenguer, Christophe & Dieulle, Laurence & Vasseur, Dominique, 2009. "A min cut-set-wise truncation procedure for importance measures computation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1827-1837.
    4. Jung, Woo Sik, 2015. "A method to improve cutset probability calculation in probabilistic safety assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 134-142.
    5. Contini, Sergio & Matuzas, Vaidas, 2011. "Analysis of large fault trees based on functional decomposition," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 383-390.
    6. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    7. Park, Jinkyun & Jung, Wondea, 2015. "A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 21-30.
    8. Ibáñez-Llano, Cristina & Rauzy, Antoine & Meléndez, Enrique & Nieto, Francisco, 2010. "A reduction approach to improve the quantification of linked fault trees through binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1314-1323.
    9. Yves Dutuit & Antoine Rauzy, 2014. "Importance factors of coherent systems: A review," Journal of Risk and Reliability, , vol. 228(3), pages 313-323, June.
    10. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Lu, Ji-Min & Wu, Xiao-Yue & Liu, Yiliu & Ann Lundteigen, Mary, 2015. "Reliability analysis of large phased-mission systems with repairable components based on success-state sampling," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 123-133.
    12. Miroslav Kvassay & Vitaly Levashenko & Elena Zaitseva, 2016. "Analysis of minimal cut and path sets based on direct partial Boolean derivatives," Journal of Risk and Reliability, , vol. 230(2), pages 147-161, April.
    13. Ibáñez-Llano, Cristina & Rauzy, Antoine & Meléndez, Enrique & Nieto, Francisco, 2010. "Hybrid approach for the assessment of PSA models by means of binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1076-1092.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:226:y:2012:i:3:p:249-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.