IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v90y2005i1p30-36.html
   My bibliography  Save this article

Development of measures to estimate truncation error in fault tree analysis

Author

Listed:
  • Jung, Woo Sik
  • Yang, Joon-Eon
  • Ha, Jaejoo

Abstract

The fault tree quantification uncertainty from the truncation error has been of great concern for the reliability evaluation of large fault trees in the probabilistic safety analysis (PSA) of nuclear plants. The truncation limit is used to truncate cut sets of the gates when quantifying the fault trees. This paper presents measures to estimate the probability of the truncated cut sets, that is, the amount of truncation error. The functions to calculate the measures are programmed into the new fault tree quantifier FTREX (Fault Tree Reliability Evaluation eXpert) and a Benchmark test was performed to demonstrate the efficiency of the measures.

Suggested Citation

  • Jung, Woo Sik & Yang, Joon-Eon & Ha, Jaejoo, 2005. "Development of measures to estimate truncation error in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 30-36.
  • Handle: RePEc:eee:reensy:v:90:y:2005:i:1:p:30-36
    DOI: 10.1016/j.ress.2004.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832004002406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2004.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Woo Sik, 2015. "A method to improve cutset probability calculation in probabilistic safety assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 134-142.
    2. Park, Jinkyun & Jung, Wondea, 2015. "A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 21-30.
    3. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Duflot, Nicolas & Bérenguer, Christophe & Dieulle, Laurence & Vasseur, Dominique, 2009. "A min cut-set-wise truncation procedure for importance measures computation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1827-1837.
    5. Ibáñez-Llano, Cristina & Rauzy, Antoine & Meléndez, Enrique & Nieto, Francisco, 2010. "A reduction approach to improve the quantification of linked fault trees through binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1314-1323.
    6. Lu, Ji-Min & Wu, Xiao-Yue & Liu, Yiliu & Ann Lundteigen, Mary, 2015. "Reliability analysis of large phased-mission systems with repairable components based on success-state sampling," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 123-133.
    7. Matuzas, V. & Contini, S., 2015. "Dynamic labelling of BDD and ZBDD for efficient non-coherent fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 183-192.
    8. Contini, Sergio & Matuzas, Vaidas, 2011. "Analysis of large fault trees based on functional decomposition," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 383-390.
    9. Ibáñez-Llano, Cristina & Rauzy, Antoine & Meléndez, Enrique & Nieto, Francisco, 2010. "Hybrid approach for the assessment of PSA models by means of binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1076-1092.
    10. Vaidas Matuzas & Sergio Contini, 2012. "On the efficiency of functional decomposition in fault tree analysis," Journal of Risk and Reliability, , vol. 226(6), pages 635-645, December.
    11. S Contini & V Matuzas, 2012. "Coupling decomposition and truncation for the analysis of complex fault trees," Journal of Risk and Reliability, , vol. 226(3), pages 249-261, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:90:y:2005:i:1:p:30-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.