IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v223y2009i2p133-143.html
   My bibliography  Save this article

A reliability analysis method using binary decision diagrams in phased mission planning

Author

Listed:
  • D R Prescott
  • R Remenyte-Prescott
  • S Reed
  • J D Andrews
  • C G Downes

Abstract

The use of autonomous systems is becoming increasingly common in many fields. A significant example of this is the ambition to deploy unmanned aerial vehicles (UAVs) for both civil and military applications. In order for autonomous systems such as these to operate effectively, they must be capable of making decisions regarding the appropriate future course of their mission responding to changes in circumstance in as short a time as possible. The systems will typically perform phased missions and, owing to the uncertain nature of the environments in which the systems operate, the mission objectives may be subject to change at short notice. The ability to evaluate the different possible mission configurations is crucial in making the right decision about the mission tasks that should be performed in order to give the highest possible probability of mission success. Because binary decision diagrams (BDDs) may be quickly and accurately quantified to give measures of the system reliability it is anticipated that they are the most appropriate analysis tools to form the basis of a reliability-based prognostics methodology. The current paper presents a new BDD-based approach for phased mission analysis, which seeks to take advantage of the proven fast analysis characteristics of the BDD and enhance it in ways that are suited to the demands of a decision-making capability for autonomous systems. The BDD approach presented allows BDDs representing the failure causes in the different phases of a mission to be constructed quickly by treating component failures in different phases of the mission as separate variables. This allows flexibility when building mission phase failure BDDs because a global variable ordering scheme is not required. An alternative representation of component states in time intervals allows the dependencies to be efficiently dealt with during the quantification process. Nodes in the BDD can represent components with any number of failure modes or factors external to the system that could affect its behaviour, such as the weather. Path simplification rules and quantification rules are developed that allow the calculation of phase failure probabilities for this new BDD approach. The proposed method provides a phased mission analysis technique that allows the rapid construction of reliability models for phased missions and, with the use of BDDs, rapid quantification.

Suggested Citation

  • D R Prescott & R Remenyte-Prescott & S Reed & J D Andrews & C G Downes, 2009. "A reliability analysis method using binary decision diagrams in phased mission planning," Journal of Risk and Reliability, , vol. 223(2), pages 133-143, June.
  • Handle: RePEc:sae:risrel:v:223:y:2009:i:2:p:133-143
    DOI: 10.1243/1748006XJRR202
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR202
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, J.D. & Poole, J. & Chen, W.H., 2013. "Fast mission reliability prediction for Unmanned Aerial Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 3-9.
    2. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:223:y:2009:i:2:p:133-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.