IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v120y2013icp3-9.html
   My bibliography  Save this article

Fast mission reliability prediction for Unmanned Aerial Vehicles

Author

Listed:
  • Andrews, J.D.
  • Poole, J.
  • Chen, W.H.

Abstract

There is currently a significant interest in the use of autonomous vehicles in many industrial sectors. One such example is the ever increasing use of Unmanned Aerial Vehicles (UAVs), particularly in military operations. This enables dangerous missions to be accomplished without risk to a pilot. UAVs also have potential civil applications which would require their certification and the demonstration that they are able to respond safety to any potential circumstances. The aircraft would therefore need to be capable of responding safely to the occurrence of component failures, the emergence of threats such as other aircraft in the neighboring airspace, and changing weather conditions. The likelihood that an aircraft will successfully complete any mission can be predicted using phased mission analysis techniques. The predicted mission unreliability can be updated in response to changing circumstances. In the event that the likelihood of mission failure becomes too high then changes have to be made to the mission plan. If these calculations could be carried out fast enough then the quantification procedure could be used to establish an acceptable response to any new conditions. With a view to using the methodology in the context described above, this paper investigates ways in which phased mission analysis can be improved to reduce the calculation time. The methodology improves the processing capability for a UAV phased mission analysis by taking into account the specific characteristics of the fault tree structures which provide the causes of phase failure for a UAV mission. It also carries out as much of the quantification as possible in advance of the mission plan being formulated.

Suggested Citation

  • Andrews, J.D. & Poole, J. & Chen, W.H., 2013. "Fast mission reliability prediction for Unmanned Aerial Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 3-9.
  • Handle: RePEc:eee:reensy:v:120:y:2013:i:c:p:3-9
    DOI: 10.1016/j.ress.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201300063X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D R Prescott & R Remenyte-Prescott & S Reed & J D Andrews & C G Downes, 2009. "A reliability analysis method using binary decision diagrams in phased mission planning," Journal of Risk and Reliability, , vol. 223(2), pages 133-143, June.
    2. Remenyte-Prescott, R. & Andrews, J.D. & Chung, P.W.H., 2010. "An efficient phased mission reliability analysis for autonomous vehicles," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 226-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Woo Sik, 2015. "A method to improve cutset probability calculation in probabilistic safety assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 134-142.
    2. Feng, Qiang & Liu, Meng & Dui, Hongyan & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2022. "Importance measure-based phased mission reliability and UAV number optimization for swarm," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Hua Yan & Pu Long Cui & Yi Sheng Wang & Fei Wan & De Li & Bi Xing Li, 2018. "A Hierarchical Reduced Markov Model for Reliability Evaluation of Phased-Mission Systems," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 11(4), pages 8637-8640, November.
    6. Hu, Bin & Seiler, Peter, 2015. "Pivotal decomposition for reliability analysis of fault tolerant control systems on unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 130-141.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    2. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    5. Xing, Liudong & Shrestha, Akhilesh & Dai, Yuanshun, 2011. "Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1375-1385.
    6. Xing, Liudong & Levitin, Gregory, 2013. "BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 145-153.
    7. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.
    8. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    9. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    10. Xing, Liudong & Amari, Suprasad V. & Wang, Chaonan, 2012. "Reliability of k-out-of-n systems with phased-mission requirements and imperfect fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 45-50.
    11. Feng, Qiang & Liu, Meng & Dui, Hongyan & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2022. "Importance measure-based phased mission reliability and UAV number optimization for swarm," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "A methodology for throughput capacity analysis of a production facility considering environment condition," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1637-1646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:120:y:2013:i:c:p:3-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.