IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i12p1550147720984654.html
   My bibliography  Save this article

Toward connectivity of a disconnected cluster in partitioned wireless sensor network for time-critical data collection

Author

Listed:
  • Kashif Nasr
  • Noor Muhammad Khan

Abstract

Reliable network connectivity is one of the major design issues in the context of wireless sensor networks. These networks have diverse communication patterns due to non-uniform sensing activities at various locations in the environment being monitored. In such scenarios, some nodes lying in high-traffic zones may consume more energy and eventually die out resulting in network partitioning. This gives rise to a situation in which alive nodes are trapped in a disconnected cluster, and they do not have enough radio range to communicate their data to the destination (i.e. a sink or a relay node connected to the main part of the network). This phenomenon may deprive a large number of alive nodes of sending their important time-critical data to the sink. In this article, we propose a virtual antenna–based cooperative beamforming approach for retrieving valuable data from these disconnected nodes. In the proposed approach, the sensor nodes in an isolated partition work together to form a directional beam. This directional beam significantly increases their overall communication range to reach out to a distant relay node which is connected to the main part of the network. The proposed approach of cooperative beamforming–based partition connectivity is more effective when a cluster with a favorably large number of nodes gets partitioned. Furthermore, a beamforming-based mechanism is proposed for a disconnected cluster to locate the nearest relay node which is still connected to the sink and to reconnect itself to the main part of the network via the most adjacent relay node for time-critical data transmission. The proposed mechanism is then evaluated through simulation results.

Suggested Citation

  • Kashif Nasr & Noor Muhammad Khan, 2020. "Toward connectivity of a disconnected cluster in partitioned wireless sensor network for time-critical data collection," International Journal of Distributed Sensor Networks, , vol. 16(12), pages 15501477209, December.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:12:p:1550147720984654
    DOI: 10.1177/1550147720984654
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720984654
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720984654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chakraborty, Suparna & Goyal, N.K. & Mahapatra, S. & Soh, Sieteng, 2020. "A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Amir Masoud Rahmani & Saqib Ali & Mohammad Sadegh Yousefpoor & Efat Yousefpoor & Rizwan Ali Naqvi & Kamran Siddique & Mehdi Hosseinzadeh, 2021. "An Area Coverage Scheme Based on Fuzzy Logic and Shuffled Frog-Leaping Algorithm (SFLA) in Heterogeneous Wireless Sensor Networks," Mathematics, MDPI, vol. 9(18), pages 1-41, September.
    3. F. C. S. Eiras & W. L. Zucchi, 2021. "A simulation model for area coverage and loss probability on mobile sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 3-16, January.
    4. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    5. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. F. C. S. Eiras & W. L. Zucchi, 2022. "Measuring synchronization precision in mobile sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(2), pages 253-267, October.
    7. Zhang, Changzhen & Yang, Jun & Wang, Ning, 2023. "Timely reliability modeling and evaluation of wireless sensor networks with adaptive N-policy sleep scheduling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Cui, Hongjun & Wang, Fei & Ma, Xinwei & Zhu, Minqing, 2022. "A novel fixed-node unconnected subgraph method for calculating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Fu, Xiuwen & Yang, Yongsheng, 2021. "Analysis on invulnerability of wireless sensor networks based on cellular automata," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Wang, Ning & Xiao, Yiyong & Tian, Tianzi & Yang, Jun, 2023. "The optimal 5G base station location of the wireless sensor network considering timely reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Fu, Xiuwen & Yang, Yongsheng, 2020. "Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:12:p:1550147720984654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.