IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v37y2013i6p445-489.html
   My bibliography  Save this article

Intraclass Correlations and Covariate Outcome Correlations for Planning Two- and Three-Level Cluster-Randomized Experiments in Education

Author

Listed:
  • Larry V. Hedges

    () (Institute for Policy Research at Northwestern University, Evanston, IL, USA)

  • E. C. Hedberg

    (Sanford School of Social and Family Dynamics at Arizona State University, Tempe, AZ, USA
    NORC at the University of Chicago, Chicago, IL, USA)

Abstract

Background:Cluster-randomized experiments that assign intact groups such as schools or school districts to treatment conditions are increasingly common in educational research. Such experiments are inherently multilevel designs whose sensitivity (statistical power and precision of estimates) depends on the variance decomposition across levels. This variance decomposition is usually summarized by the intraclass correlation (ICC) structure and, if covariates are used, the effectiveness of the covariates in explaining variation at each level of the design.Objectives:This article provides a compilation of school- and district-level ICC values of academic achievement and related covariate effectiveness based on state longitudinal data systems. These values are designed to be used for planning group-randomized experiments in education. The use of these values to compute statistical power and plan two- and three-level group-randomized experiments is illustrated.Research Design:We fit several hierarchical linear models to state data by grade and subject to estimate ICCs and covariate effectiveness. The total sample size is over 4.8 million students. We then compare our average of state estimates with the national work by Hedges and Hedberg.

Suggested Citation

  • Larry V. Hedges & E. C. Hedberg, 2013. "Intraclass Correlations and Covariate Outcome Correlations for Planning Two- and Three-Level Cluster-Randomized Experiments in Education," Evaluation Review, , vol. 37(6), pages 445-489, December.
  • Handle: RePEc:sae:evarev:v:37:y:2013:i:6:p:445-489
    as

    Download full text from publisher

    File URL: http://erx.sagepub.com/content/37/6/445.abstract
    Download Restriction: no

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:37:y:2013:i:6:p:445-489. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (SAGE Publications). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.