IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v35y2008i3p535-551.html
   My bibliography  Save this article

Residential and Nonresidential Construction Initiations in Tel Aviv-Yafo: Autocorrelation Analysis of Urban Structure Evolution

Author

Listed:
  • Idan Porat
  • Amnon Frenkel
  • Maxim Shoshany

    (Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, 32000 Haifa, Israel)

Abstract

Construction initiation (CI) of floor area is an important socioeconomic and physical characteristic of urban structure and its evolution. Despite its importance and the availability of CI data, it has not attracted significant attention until now. Since the 1970s, the Tel Aviv-Yafo Municipality and Israel Central Bureau of Statistics have collected annual CI data pertaining to residential and nonresidential categories for subquarters. This paper presents an analysis of the spatial evolution of the city of Tel Aviv in the years 1976–2003, from the CI perspective. Novel aspects of this research are related to autocorrelation analysis CI patterns in individual years versus annually accumulated construction and in core versus noncore build up categories. It is shown that floor-area additions form relatively complex spatiotemporal patterns that are not referred to explicitly in existing urban studies of Tel Aviv. Autocorrelation results suggest the superimposition of current almost homogeneous or random spread over earlier phases of core area domination: the formation of uniform choice space. These random patterns represent primarily spontaneous residential regeneration processes since 1990, and major diffusion of the commercial and public activities beyond the central business district areas.

Suggested Citation

  • Idan Porat & Amnon Frenkel & Maxim Shoshany, 2008. "Residential and Nonresidential Construction Initiations in Tel Aviv-Yafo: Autocorrelation Analysis of Urban Structure Evolution," Environment and Planning B, , vol. 35(3), pages 535-551, June.
  • Handle: RePEc:sae:envirb:v:35:y:2008:i:3:p:535-551
    DOI: 10.1068/b33069
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b33069
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b33069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    2. Lucien Benguigui & Daniel Czamanski & Maria Marinov & Yuval Portugali, 2000. "When and Where is a City Fractal?," Environment and Planning B, , vol. 27(4), pages 507-519, August.
    3. Sun Sheng Han, 2005. "Polycentric Urban Development and Spatial Clustering of Condominium Property Values: Singapore in the 1990s," Environment and Planning A, , vol. 37(3), pages 463-481, March.
    4. Gershon Alperovich & Joseph Deutsch, 2002. "articles: An application of a switching regimes regression to the study of urban structure," Papers in Regional Science, Springer;Regional Science Association International, vol. 81(1), pages 83-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    2. Qindong Fan & Fengtian Du & Hu Li, 2020. "A Study of the Spatial Form of Maling Village, Henan, China," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    3. Yanguang Chen & Yixing Zhou, 2003. "The Rank-Size Rule and Fractal Hierarchies of Cities: Mathematical Models and Empirical Analyses," Environment and Planning B, , vol. 30(6), pages 799-818, December.
    4. Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
    5. Jian Feng & Yanguang Chen, 2021. "Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    6. Chen, Yanguang, 2009. "Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1766-1778.
    7. Lucien Benguigui & Efrat Blumenfeld-Lieberthal & Daniel Czamanski, 2006. "The Dynamics of the Tel Aviv Morphology," Environment and Planning B, , vol. 33(2), pages 269-284, April.
    8. Chen, Yanguang & Zhou, Yixing, 2008. "Scaling laws and indications of self-organized criticality in urban systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 85-98.
    9. Huan Lu & Ruiyang Wang & Rong Ye & Jinzhao Fan, 2023. "Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China," Land, MDPI, vol. 12(1), pages 1-23, January.
    10. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    11. Chen, Yanguang & Lin, Jingyi, 2009. "Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 615-629.
    12. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    13. Isabelle Thomas & Pierre Frankhauser & Dominique Badariotti, 2012. "Comparing the fractality of European urban neighbourhoods: do national contexts matter?," Journal of Geographical Systems, Springer, vol. 14(2), pages 189-208, April.
    14. Fei Liu & Qing Huang, 2019. "An Approach to Determining the Spatially Contiguous Zone of a Self-Organized Urban Agglomeration," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    15. Dani Broitman & Daniel Czamanski, 2015. "Bursts and Avalanches: The Dynamics of Polycentric Urban Evolution," Environment and Planning B, , vol. 42(1), pages 58-75, February.
    16. Cécile Tannier & Gilles Vuidel & Hélène Houot & Pierre Frankhauser, 2012. "Spatial Accessibility to Amenities in Fractal and Nonfractal Urban Patterns," Environment and Planning B, , vol. 39(5), pages 801-819, October.
    17. Jian Feng & Yanguang Chen, 2010. "Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals," Environment and Planning B, , vol. 37(5), pages 838-856, October.
    18. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    19. Chen, Yanguang, 2022. "Normalizing and classifying shape indexes of cities by ideas from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    20. Chen, Yanguang, 2011. "Fractal systems of central places based on intermittency of space-filling," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 619-632.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:35:y:2008:i:3:p:535-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.