IDEAS home Printed from
   My bibliography  Save this article

Unicidad del equilibrio de Nash-Cournot bajo correspondencias contractivas de mejor respuesta


  • Elvio Accinelli

    () (Universidad Autonoma de San Luis Potosi)

  • Edgar J. Sanchez Carrera

    (University of Siena)


En este trabajo se muestran condiciones para la unicidad del equilibrio de Nash-Cournot para un juego de n-firmas. Estas condiciones garantizan que las funciones de mejor respuesta para n-firmas que compiten en forma oligopolica a la Cournot sean contracciones y generalizan las condiciones de concavidad generalmente consideradas para este fin.

Suggested Citation

  • Elvio Accinelli & Edgar J. Sanchez Carrera, 2007. "Unicidad del equilibrio de Nash-Cournot bajo correspondencias contractivas de mejor respuesta," EconoQuantum, Revista de Economia y Negocios, Universidad de Guadalajara, Centro Universitario de Ciencias Economico Administrativas, Departamento de Metodos Cuantitativos y Maestria en Economia., vol. 4(1), pages 43-57, Julio-Dic.
  • Handle: RePEc:qua:journl:v:4:y:2007:i:1:p:43-57

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Khaled Hussein & A. P. Thirlwall, 2000. "The Model of “New” Growth Theory Is the Harrod-Domar Growth Equation: Investment and Growth Revisited," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 22(3), pages 427-435, March.
    2. Anthony P. Thirlwall, 2011. "The Balance of Payments Constraint as an Explanation of International Growth Rate Differences," PSL Quarterly Review, Economia civile, vol. 64(259), pages 429-438.
    3. Itay Goldstein & Assaf Razin, 2005. "Foreign Direct Investment vs. Foreiegn Portfolio Investment," NBER Working Papers 11047, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item


    mejor respuesta; contraccion; equilibrio de Cournot; unicidad.;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qua:journl:v:4:y:2007:i:1:p:43-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sandra Ivett Portugal Padilla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.