IDEAS home Printed from https://ideas.repec.org/a/plo/pwat00/0000119.html
   My bibliography  Save this article

Daily stream temperature predictions for free-flowing streams in the Pacific Northwest, USA

Author

Listed:
  • Jared E Siegel
  • Aimee H Fullerton
  • Alyssa M FitzGerald
  • Damon Holzer
  • Chris E Jordan

Abstract

Supporting sustainable lotic ecosystems and thermal habitats requires estimates of stream temperature that are high in scope and resolution across space and time. We combined and enhanced elements of existing stream temperature models to produce a new statistical model to address this need. Contrasting with previous models that estimated coarser metrics such as monthly or seasonal stream temperature or focused on individual watersheds, we modeled daily stream temperature across the entire calendar year for a broad geographic region. This model reflects mechanistic processes using publicly available climate and landscape covariates in a Generalized Additive Model framework. We allowed covariates to interact while accounting for nonlinear relationships between temporal and spatial covariates to better capture seasonal patterns. To represent variation in sensitivity to climate, we used a moving average of antecedent air temperatures over a variable duration linked to area-standardized streamflow. The moving average window size was longer for reaches having snow-dominated hydrology, especially at higher flows, whereas window size was relatively constant and low for reaches having rain-dominated hydrology. Our model’s ability to capture the temporally-variable impact of snowmelt improved its capacity to predict stream temperature across diverse geography for multiple years. We fit the model to stream temperatures from 1993–2013 and predicted daily stream temperatures for ~261,200 free-flowing stream reaches across the Pacific Northwest USA from 1990–2021. Our daily model fit well (RMSE = 1.76; MAE = 1.32°C). Cross-validation suggested that the model produced useful predictions at unsampled locations across diverse landscapes and climate conditions. These stream temperature predictions will be useful to natural resource practitioners for effective conservation planning in lotic ecosystems and for managing species such as Pacific salmon. Our approach is straightforward and can be adapted to new spatial regions, time periods, or scenarios such as the anticipated decline in snowmelt with climate change.

Suggested Citation

  • Jared E Siegel & Aimee H Fullerton & Alyssa M FitzGerald & Damon Holzer & Chris E Jordan, 2023. "Daily stream temperature predictions for free-flowing streams in the Pacific Northwest, USA," PLOS Water, Public Library of Science, vol. 2(8), pages 1-27, August.
  • Handle: RePEc:plo:pwat00:0000119
    DOI: 10.1371/journal.pwat.0000119
    as

    Download full text from publisher

    File URL: https://journals.plos.org/water/article?id=10.1371/journal.pwat.0000119
    Download Restriction: no

    File URL: https://journals.plos.org/water/article/file?id=10.1371/journal.pwat.0000119&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pwat.0000119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    2. Santos-Fernandez, Edgar & Ver Hoef, Jay M. & Peterson, Erin E. & McGree, James & Isaak, Daniel J. & Mengersen, Kerrie, 2022. "Bayesian spatio-temporal models for stream networks," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    3. Danielle K. Hare & Ashley M. Helton & Zachary C. Johnson & John W. Lane & Martin A. Briggs, 2021. "Continental-scale analysis of shallow and deep groundwater contributions to streams," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnab Bhattacharjee & Liqian Cai & Taps Maiti, 2013. "Functional regression over irregular domains," SEEC Discussion Papers 1301, Spatial Economics and Econometrics Centre, Heriot Watt University.
    2. Santos-Fernandez, Edgar & Ver Hoef, Jay M. & Peterson, Erin E. & McGree, James & Isaak, Daniel J. & Mengersen, Kerrie, 2022. "Bayesian spatio-temporal models for stream networks," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    3. Matthew Heiner & Matthew J. Heaton & Benjamin Abbott & Philip White & Camille Minaudo & Rémi Dupas, 2023. "Model-Based Clustering of Trends and Cycles of Nitrate Concentrations in Rivers Across France," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 74-98, March.
    4. Seoncheol Park & Hee‐Seok Oh, 2022. "Lifting scheme for streamflow data in river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 467-490, March.
    5. Du, Jiali & Huo, Zailin & Zhang, Chenglong & Wang, Chaozi, 2024. "Integrating groundwater response function into the Jarvis-type model for Populus popularis transpiration simulations," Agricultural Water Management, Elsevier, vol. 303(C).
    6. Brian Gray & Vyacheslav Lyubchich & Yulia Gel & James Rogala & Dale Robertson & Xiaoqiao Wei, 2016. "Estimation of river and stream temperature trends under haphazard sampling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 89-105, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pwat00:0000119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: water (email available below). General contact details of provider: https://journals.plos.org/water .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.