IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0339065.html

SSE forecasts based on market–sentiment dual anchoring

Author

Listed:
  • Lei Yang
  • Bo Gan
  • Xueyan Niu
  • Qing Liu

Abstract

Anchoring is widely considered one of the most robust and consistently observed effects in experimental psychology. This study employs the highest and lowest indices of the Shanghai Stock Exchange (SSE) alongside the highest and lowest bullish sentiments over a 52-week period as anchors, in conjunction with Fibonacci retracement levels, to develop a dual market–sentiment anchoring multivariate feature matrix. Based on this feature matrix, we propose a forecasting model called Market Sentiment Dual Anchoring CNN2D-ABiLSTM (MSD-CNN2D-ABiLSTM). This model employs CNN2D to extract spatial features from market and sentiment data, utilizes BiLSTM networks to process and integrate temporal features, and incorporates an attention mechanism to emphasize essential spatial and temporal information. Experimental results indicate that this model achieves a prediction accuracy exceeding 90% and an R2 value greater than 95% for lags of 1–2 trading days, enabling precise forecasting of the SSE index. Additionally, the model demonstrates effective forecasting performance for up to 10 trading days ahead, significantly outperforming traditional baseline models. Furthermore, structural sensitivity tests reveal that the extraction of local spatial features by CNN2D provides a predictive advantage over the short-term temporal features captured by CNN1D in complex market structures.

Suggested Citation

  • Lei Yang & Bo Gan & Xueyan Niu & Qing Liu, 2025. "SSE forecasts based on market–sentiment dual anchoring," PLOS ONE, Public Library of Science, vol. 20(12), pages 1-39, December.
  • Handle: RePEc:plo:pone00:0339065
    DOI: 10.1371/journal.pone.0339065
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0339065
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0339065&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0339065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emerson Rodolfo Abraham & João Gilberto Mendes dos Reis & Oduvaldo Vendrametto & Pedro Luiz de Oliveira Costa Neto & Rodrigo Carlo Toloi & Aguinaldo Eduardo de Souza & Marcos de Oliveira Morais, 2020. "Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production," Agriculture, MDPI, vol. 10(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    2. Marley Nunes Vituri Toloi & Silvia Helena Bonilla & Rodrigo Carlo Toloi & Irenilza Alencar Nääs, 2024. "Potential for carbon sequestration in different biomes and CO2 emissions in soybean crop," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3331-3347, February.
    3. Marley Nunes Vituri Toloi & Silvia Helena Bonilla & Rodrigo Carlo Toloi & Helton Raimundo Oliveira Silva & Irenilza de Alencar Nääs, 2021. "Development Indicators and Soybean Production in Brazil," Agriculture, MDPI, vol. 11(11), pages 1-15, November.
    4. Toloi, Rodrigo Carlo & Reis, João Gilberto Mendes dos & Toloi, Marley Nunes Vituri & Vendrametto, Oduvaldo & Cabral, José António Sarsfield Pereira, 2022. "Applying analytic hierarchy process (AHP) to identify decision-making in soybean supply chains: a case of Mato Grosso production," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 60(2), January.
    5. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    6. Sebastian Kujawa & Gniewko Niedbała, 2021. "Artificial Neural Networks in Agriculture," Agriculture, MDPI, vol. 11(6), pages 1-6, May.
    7. Lamichhane, Sabhyata & Mei, Bin & Siry, Jacek, 2023. "Forecasting pine sawtimber stumpage prices: A comparison between a time series hybrid model and an artificial neural network," Forest Policy and Economics, Elsevier, vol. 154(C).
    8. Édson Luis Bolfe & Lúcio André de Castro Jorge & Ieda Del’Arco Sanches & Ariovaldo Luchiari Júnior & Cinthia Cabral da Costa & Daniel de Castro Victoria & Ricardo Yassushi Inamasu & Célia Regina Grego, 2020. "Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers," Agriculture, MDPI, vol. 10(12), pages 1-16, December.
    9. Juan D. Borrero & Jesús Mariscal & Alfonso Vargas-Sánchez, 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors," Stats, MDPI, vol. 5(4), pages 1-14, November.
    10. Claudiu George Bocean, 2024. "A Cross-Sectional Analysis of the Relationship between Digital Technology Use and Agricultural Productivity in EU Countries," Agriculture, MDPI, vol. 14(4), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0339065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.