IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0336169.html

Reliability analysis of inverted exponentiated Rayleigh parameters via progressive hybrid censoring data with applications in medical data

Author

Listed:
  • Said G Nassr
  • OE Abo-Kasem
  • Rana H Khashab
  • Etaf Alshawarbeh
  • Shokrya S Alshqaq
  • Neema M Elharoun

Abstract

This paper examines the estimation of model parameters, reliability, and hazard rate functions of the inverted exponentiated Rayleigh distribution under progressive hybrid Type-I censoring. Three estimation methodologies, maximum likelihood, maximum product of spacing, and Bayesian approaches, are explored. The classical perspective employs maximum likelihood and maximum product of spacing approaches for estimating unknown parameters, reliability, hazard rate functions, and computing approximate confidence intervals. Bayesian estimation is formulated using the squared-error and LINEX loss functions, predicated on independent gamma priors. Owing to the complex nature of the joint posterior distribution, Bayes estimates are evaluated by generating samples from the whole conditional distributions via Markov Chain Monte Carlo methods. The highest posterior density credible intervals are also established for each unknown parameter, reliability, and hazard rate functions. The efficacy of the proposed strategies is evaluated through a simulated study. To assess the efficacy of the estimation techniques, a comprehensive simulation study is conducted, encompassing various scenarios with diverse sample sizes and progressive censoring schemes. Furthermore, the practical applicability of the proposed methods is demonstrated through the analysis of real-world datasets taken from the medical field. This data represents the relief time (in hours) of arthritis patients receiving a fixed dose of this drug. Numerical investigations reveal that Bayes estimates employing the LINEX loss function exhibit superior performance compared to other estimation methods, underscoring their preference due to heightened accuracy and robustness.

Suggested Citation

  • Said G Nassr & OE Abo-Kasem & Rana H Khashab & Etaf Alshawarbeh & Shokrya S Alshqaq & Neema M Elharoun, 2025. "Reliability analysis of inverted exponentiated Rayleigh parameters via progressive hybrid censoring data with applications in medical data," PLOS ONE, Public Library of Science, vol. 20(12), pages 1-29, December.
  • Handle: RePEc:plo:pone00:0336169
    DOI: 10.1371/journal.pone.0336169
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0336169
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0336169&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0336169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    2. Yu-Jau Lin & Yuhlong Lio & Tzong-Ru Tsai, 2025. "Bayesian Estimation of the Stress–Strength Parameter for Bivariate Normal Distribution Under an Updated Type-II Hybrid Censoring," Mathematics, MDPI, vol. 13(5), pages 1-17, February.
    3. David Han & Tianyu Bai, 2025. "Exact inference for progressively Type-I censored step-stress accelerated life test under interval monitoring," Computational Statistics, Springer, vol. 40(6), pages 2877-2905, July.
    4. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    5. Mohammad Vali Ahmadi & Jafar Ahmadi & Mousa Abdi, 2019. "Evaluating the lifetime performance index of products based on generalized order statistics from two-parameter exponential model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 251-275, April.
    6. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    7. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    8. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    9. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    10. Intekhab Alam & Sadia Anwar & Lalit Kumar Sharma, 2023. "Inference on adaptive Type-II progressive hybrid censoring under partially accelerated life test for Gompertz distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(6), pages 2661-2673, December.
    11. Deepak Prajapati & Sharmistha Mitra & Debasis Kundu, 2019. "A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 251-288, December.
    12. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    13. Jimut Bahan Chakrabarty & Shovan Chowdhury & Soumya Roy, 2019. "Optimum life test plan for products sold under warranty having Type-I generalizedhybrid censored Weibull distributed lifetimes," Working papers 302, Indian Institute of Management Kozhikode.
    14. B. Chandrasekar & A. Childs & N. Balakrishnan, 2004. "Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 994-1004, October.
    15. Balakrishnan, N. & Rasouli, Abbas, 2008. "Exact likelihood inference for two exponential populations under joint Type-II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2725-2738, January.
    16. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    17. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    18. Julian Górny & Erhard Cramer, 2018. "Modularization of hybrid censoring schemes and its application to unified progressive hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 173-210, February.
    19. N. Balakrishnan & Qihao Xie & D. Kundu, 2009. "Exact inference for a simple step-stress model from the exponential distribution under time constraint," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 251-274, March.
    20. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0336169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.