IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v81y2019i2d10.1007_s13571-018-0167-0.html
   My bibliography  Save this article

A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution

Author

Listed:
  • Deepak Prajapati

    (Indian Institute of Technology Kanpur)

  • Sharmistha Mitra

    (Indian Institute of Technology Kanpur)

  • Debasis Kundu

    (Indian Institute of Technology Kanpur)

Abstract

The study proposes a new decision theoretic sampling plan (DSP) for Type-I and Type-I hybrid censored samples when the lifetimes of individual items are exponentially distributed with a scale parameter. The DSP is based on an estimator of the scale parameter which always exists, unlike the MLE which may not always exist. Using a quadratic loss function and a decision function based on the proposed estimator, a DSP is derived. To obtain the optimum DSP, a finite algorithm is used. Numerical results demonstrate that in terms of the Bayes risk, the optimum DSP is as good as the Bayesian sampling plan (BSP) proposed by Lin et al. (2002) and Liang and Yang (2013). The proposed DSP performs better than the sampling plan of Lam (1994) and Lin et al. (2008a) in terms of Bayes risks. The main advantage of the proposed DSP is that for higher degree polynomial and non-polynomial loss functions, it can be easily obtained as compared to the BSP.

Suggested Citation

  • Deepak Prajapati & Sharmistha Mitra & Debasis Kundu, 2019. "A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 251-288, December.
  • Handle: RePEc:spr:sankhb:v:81:y:2019:i:2:d:10.1007_s13571-018-0167-0
    DOI: 10.1007/s13571-018-0167-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-018-0167-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-018-0167-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Wen-Tao & Lin, Yu-Pin, 2004. "Bayesian sampling plans for exponential distribution based on uniform random censored data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 669-691, January.
    2. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    3. Yu-Pin Lin & TaChen Liang & Wen-Tao Huang, 2002. "Bayesian Sampling Plans for Exponential Distribution Based on Type I Censoring Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 100-113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepak Prajapati & Shuvashree Mondal & Debasis Kundu, 2024. "Two sample Bayesian acceptance sampling plan," Annals of Operations Research, Springer, vol. 340(1), pages 425-449, September.
    2. Yunhan Liu & Changchun Gao & Xiaofeng Liu & Ping Luo & Jianguo Ren, 2024. "A Comparison of MLE for Some Index Distributions Based on Censored Samples," Mathematics, MDPI, vol. 12(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiran Prajapat & Arnab Koley & Sharmishtha Mitra & Debasis Kundu, 2023. "An Optimal Bayesian Sampling Plan for Two-Parameter Exponential Distribution Under Type-I Hybrid Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 512-539, February.
    2. Lee‐Shen Chen & Ming‐Chung Yang & TaChen Liang, 2015. "Bayesian sampling plans for exponential distributions with interval censored samples," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 604-616, October.
    3. Deepak Prajapati & Shuvashree Mondal & Debasis Kundu, 2024. "Two sample Bayesian acceptance sampling plan," Annals of Operations Research, Springer, vol. 340(1), pages 425-449, September.
    4. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    5. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    6. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    7. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    8. Yu-Jau Lin & Yuhlong Lio & Tzong-Ru Tsai, 2025. "Bayesian Estimation of the Stress–Strength Parameter for Bivariate Normal Distribution Under an Updated Type-II Hybrid Censoring," Mathematics, MDPI, vol. 13(5), pages 1-17, February.
    9. Mukhtar M Salah & Essam A Ahmed & Ziyad A Alhussain & Hanan Haj Ahmed & M El-Morshedy & M S Eliwa, 2021. "Statistical inferences for type-II hybrid censoring data from the alpha power exponential distribution," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-16, January.
    10. Balakrishnan, N. & Jones, M.C., 2022. "Closure of beta and Dirichlet distributions under discrete mixing," Statistics & Probability Letters, Elsevier, vol. 188(C).
    11. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    12. Tanmay Sen & Yogesh Mani Tripathi & Ritwik Bhattacharya, 2018. "Statistical Inference and Optimum Life Testing Plans Under Type-II Hybrid Censoring Scheme," Annals of Data Science, Springer, vol. 5(4), pages 679-708, December.
    13. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    14. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    15. Mohammad Vali Ahmadi & Jafar Ahmadi & Mousa Abdi, 2019. "Evaluating the lifetime performance index of products based on generalized order statistics from two-parameter exponential model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 251-275, April.
    16. N. Balakrishnan & G. Iliopoulos, 2010. "Stochastic monotonicity of the MLEs of parameters in exponential simple step-stress models under Type-I and Type-II censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 89-109, July.
    17. Saieed F. Ateya & Abdulaziz S. Alghamdi & Abd Allah A. Mousa, 2022. "Future Failure Time Prediction Based on a Unified Hybrid Censoring Scheme for the Burr-X Model with Engineering Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    18. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    19. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    20. Debashis Samanta & Debasis Kundu & Ayon Ganguly, 2018. "Order Restricted Bayesian Analysis of a Simple Step Stress Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 195-221, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:81:y:2019:i:2:d:10.1007_s13571-018-0167-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.