IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0332998.html
   My bibliography  Save this article

Study of collaborative filtering recommendation with user clustering incorporating implicit social relationships and trust relationships

Author

Listed:
  • Yan Li
  • Xue Lin

Abstract

With the rapid development of the internet, information overload has become a prevalent issue. In order to tackle information overload, recommendation systems serve as an effective tool that can offer personalized recommendation services to users. The efficiency of recommendation systems is, however, hampered by the prevalent problems with data sparsity and cold start issues in collaborative filtering recommendations. Researchers typically address these issues by utilizing user social information clustering methods. Nevertheless, in practice, previous studies have shown that inaccurate similarity calculations and poor clustering results have led to a decrease in prediction accuracy. This paper suggests a collaborative filtering recommendation algorithm that incorporates several relationships in order to overcome these difficulties. This method first calculates user similarity based on implicit social relationships and trust relationships. After clustering users using the spectral clustering technique, it makes use of user-based collaborative filtering recommendations within the cluster containing the target person. The collaborative filtering recommendation system that integrates many relationships effectively decreases prediction errors and improves recommendation accuracy, as shown by the results of simulated studies.

Suggested Citation

  • Yan Li & Xue Lin, 2025. "Study of collaborative filtering recommendation with user clustering incorporating implicit social relationships and trust relationships," PLOS ONE, Public Library of Science, vol. 20(10), pages 1-15, October.
  • Handle: RePEc:plo:pone00:0332998
    DOI: 10.1371/journal.pone.0332998
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0332998
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0332998&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0332998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jing & Peng, Qinke & Sun, Shiquan & Liu, Che, 2014. "Collaborative filtering recommendation algorithm based on user preference derived from item domain features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 66-76.
    2. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.
    3. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    2. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.
    3. Lin Yu & Xin Zhao & Ming Lv & Jie Zhang, 2025. "A Consensus Community-Based Spider Wasp Optimization for Dynamic Community Detection," Mathematics, MDPI, vol. 13(2), pages 1-22, January.
    4. Li, Man & Wen, Luosheng & Chen, Feiyu, 2021. "A novel Collaborative Filtering recommendation approach based on Soft Co-Clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Jun Yao & Jianhui Chen, 2023. "A Study on the Characteristics of Middle-aged Chinese Female Users Based on Clothing Needs," Asian Social Science, Canadian Center of Science and Education, vol. 19(4), pages 1-86, August.
    6. Yong Eui Kim & Sang-Min Choi & Dongwoo Lee & Yeong Geon Seo & Suwon Lee, 2023. "A Reliable Prediction Algorithm Based on Genre2Vec for Item-Side Cold-Start Problems in Recommender Systems with Smart Contracts," Mathematics, MDPI, vol. 11(13), pages 1-25, July.
    7. Zare, Hadi & Nikooie Pour, Mina Abd & Moradi, Parham, 2019. "Enhanced recommender system using predictive network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 322-337.
    8. Ma, Wenping & Ren, Chen & Wu, Yue & Wang, Shanfeng & Feng, Xiang, 2017. "Personalized recommendation via unbalance full-connectivity inference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 273-279.
    9. Yonis Gulzar & Ali A. Alwan & Radhwan M. Abdullah & Abedallah Zaid Abualkishik & Mohamed Oumrani, 2023. "OCA: Ordered Clustering-Based Algorithm for E-Commerce Recommendation System," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    10. Liang Xiao & Qibei Lu & Feipeng Guo, 2020. "Mobile Personalized Recommendation Model based on Privacy Concerns and Context Analysis for the Sustainable Development of M-commerce," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    11. Sang-Min Choi & Dongwoo Lee & Kiyoung Jang & Chihyun Park & Suwon Lee, 2023. "Improving Data Sparsity in Recommender Systems Using Matrix Regeneration with Item Features," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
    12. Juyeon Son & Wonyoung Choi & Sang-Min Choi, 2020. "Trust information network in social Internet of things using trust-aware recommender systems," International Journal of Distributed Sensor Networks, , vol. 16(4), pages 15501477209, April.
    13. Qian, Fulan & Zhao, Shu & Tang, Jie & Zhang, Yanping, 2016. "SoRS: Social recommendation using global rating reputation and local rating similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 61-72.
    14. Ma, Tinghuai & Suo, Xiafei & Zhou, Jinjuan & Tang, Meili & Guan, Donghai & Tian, Yuan & Al-Dhelaan, Abdullah & Al-Rodhaan, Mznah, 2016. "Augmenting matrix factorization technique with the combination of tags and genres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 101-116.
    15. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    16. Miguel Alves Gomes & Tobias Meisen, 2023. "A review on customer segmentation methods for personalized customer targeting in e-commerce use cases," Information Systems and e-Business Management, Springer, vol. 21(3), pages 527-570, September.
    17. Hu, Liang & Ren, Liang & Lin, Wenbin, 2018. "A reconsideration of negative ratings for network-based recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 690-701.
    18. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    19. Wang, Ximeng & Liu, Yun & Xiong, Fei, 2016. "Improved personalized recommendation based on a similarity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 271-280.
    20. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0332998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.