IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0327664.html
   My bibliography  Save this article

Empirical study of daily link traffic volume forecasting based on a deep neural network

Author

Listed:
  • Jin Ki Eom
  • Kwang-Sub Lee
  • Jin Hong Min
  • Ho-Chan Kwak

Abstract

Forecasting the daily link traffic volume is critical in transportation demand analysis in feasibility studies for planning transportation facilities. The high purchase and maintenance cost of commercial transport planning software poses a challenge for several underdeveloped and developing countries. Therefore, there is a need for cost-effective methodology to forecast link traffic volume. This study proposes a data-driven approach for modeling traffic assignment and employs a deep neural network to forecast daily link volume derived from transport planning software. The main idea is that link traffic volume is significantly associated with traffic network attributes (i.e., number of lanes, travel speed, lane capacity, and roadway type) and network flow attributes (i.e., number of shortest paths on the corresponding link and origin-destination travel demand). Therefore, a multi-layer perception model is developed to effectively capture the nonlinear relationship among the link traffic volume, traffic network attributes, and network flow attributes. A case study demonstrated that the proposed method achieves comparable performance to commercial software in forecasting long-term link traffic volume. The obtained results indicated that the proposed method has the potential to serve as an alternative to commercialized software, although further studies are required to validate and enhance its application.

Suggested Citation

  • Jin Ki Eom & Kwang-Sub Lee & Jin Hong Min & Ho-Chan Kwak, 2025. "Empirical study of daily link traffic volume forecasting based on a deep neural network," PLOS ONE, Public Library of Science, vol. 20(7), pages 1-20, July.
  • Handle: RePEc:plo:pone00:0327664
    DOI: 10.1371/journal.pone.0327664
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327664
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0327664&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0327664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. Arezki & D. Van Vliet, 1990. "A Full Analytical Implementation of the PARTAN/Frank–Wolfe Algorithm for Equilibrium Assignment," Transportation Science, INFORMS, vol. 24(1), pages 58-62, February.
    2. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Mitradjieva & Per Olov Lindberg, 2013. "The Stiff Is Moving---Conjugate Direction Frank-Wolfe Methods with Applications to Traffic Assignment ," Transportation Science, INFORMS, vol. 47(2), pages 280-293, May.
    2. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
    3. Meruza Kubentayeva & Demyan Yarmoshik & Mikhail Persiianov & Alexey Kroshnin & Ekaterina Kotliarova & Nazarii Tupitsa & Dmitry Pasechnyuk & Alexander Gasnikov & Vladimir Shvetsov & Leonid Baryshev & A, 2024. "Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints," Computational Management Science, Springer, vol. 21(1), pages 1-33, June.
    4. Federico Cavallaro & Francesco Bruzzone & Silvio Nocera, 2023. "Effects of high-speed rail on regional accessibility," Transportation, Springer, vol. 50(5), pages 1685-1721, October.
    5. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    6. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    7. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    8. Taesung Hwang, 2021. "Assignment of Freight Truck Shipment on the U.S. Highway Network," Sustainability, MDPI, vol. 13(11), pages 1-11, June.
    9. Meruza Kubentayeva & Alexander Gasnikov, 2021. "Finding Equilibria in the Traffic Assignment Problem with Primal-Dual Gradient Methods for Stable Dynamics Model and Beckmann Model," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    10. Zhanzhong Wang & Ruijuan Chu & Minghang Zhang & Xiaochao Wang & Siliang Luan, 2020. "An Improved Hybrid Highway Traffic Flow Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    11. Chi Xie & Xing Wu & Stephen Boyles, 2019. "Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account," Annals of Operations Research, Springer, vol. 273(1), pages 279-310, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.