IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0321263.html
   My bibliography  Save this article

A population spatialization method based on the integration of feature selection and an improved random forest model

Author

Listed:
  • Zhen Zhao
  • Hongmei Guo
  • Xueli Jiang
  • Ying Zhang
  • Changjiang Lu
  • Can Zhang
  • Zonghang He

Abstract

Ascertaining the precise and accurate spatial distribution of population is essential in conducting effective urban planning, resource allocation, and emergency rescue planning. The random forest (RF) model is widely used in population spatialization studies. However, the complexity of population distribution characteristics and the limitations of the RF model in processing unbalanced datasets affect population prediction accuracy. To address these issues, a population spatialization model that integrates feature selection with an improved random forest is proposed herein. Firstly, recursive feature elimination using cross validation (RFECV), maximum information coefficient (MIC), and mean decrease accuracy (MDA) methods were utilized to select population distribution feature factors. The random forest was constructed using feature subsets that were selected via different feature selection methods, namely MIC-RF, RFECV-RF and MDA-RF. Subsequently, the feature factors corresponding to the model with the highest accuracy were selected as the optimal feature subsets and used in the model construction as input data. Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. Based on this model, a spatial population distribution dataset of the Southern Sichuan Economic Zone at a 500m resolution was generated. Finally, the population dataset generated in this study was compared and validated with the WorldPop dataset. The results showed that utilizing feature selection methods improves model accuracy to varying degrees compared with RF based on all factors, and the MDA-RF had the lowest MAPE of 0.174 and the highest R2 of 0.913 among them. Therefore, feature factors selection using the MDA method was considered the optimal feature subset. Compared with MDA-RF, the prediction accuracy of the improved RF built on the same subset increased by 1.7%, indicating that improving the bootstrap sampling of random forest by using the K-means++ clustering algorithm can enhance model accuracy to some extent. Compared with the WorldPop dataset, the accuracy of the results predicted using the proposed method was enhanced. The MRE and RMSE of the WorldPop dataset were 57.24 and 23174.98, respectively, while the MRE and RMSE of the proposed method were 25.00 and 15776.50, respectively. This implies that the method proposed in this paper could simulate population spatial distribution more accurately.

Suggested Citation

  • Zhen Zhao & Hongmei Guo & Xueli Jiang & Ying Zhang & Changjiang Lu & Can Zhang & Zonghang He, 2025. "A population spatialization method based on the integration of feature selection and an improved random forest model," PLOS ONE, Public Library of Science, vol. 20(4), pages 1-25, April.
  • Handle: RePEc:plo:pone00:0321263
    DOI: 10.1371/journal.pone.0321263
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321263
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0321263&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0321263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.