IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p11974-d921764.html
   My bibliography  Save this article

Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin

Author

Listed:
  • Dike Zhang

    (School of Foreign Languages, China University of Geosciences, Wuhan 430074, China)

  • Jianpeng Wang

    (Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430014, China
    Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources, Wuhan 430014, China)

  • Ying Wang

    (Department of Land Resources Management, China University of Geosciences, Wuhan 430074, China)

  • Lei Xu

    (Wuhan Economic and Technological Development Zone (Hannan District) Natural Resources and Planning Bureau, Wuhan 430056, China)

  • Liang Zheng

    (Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430014, China
    Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources, Wuhan 430014, China)

  • Bowen Zhang

    (Department of Land Resources Management, China University of Geosciences, Wuhan 430074, China)

  • Yuzhe Bi

    (Department of Land Resources Management, China University of Geosciences, Wuhan 430074, China)

  • Hui Yang

    (Department of Land Resources Management, China University of Geosciences, Wuhan 430074, China)

Abstract

The extent to which landscape spatial patterns can impact the dynamics and distribution of biodiversity is a key geography and ecology issue. However, few previous studies have quantitatively analyzed the spatial relationship between the landscape pattern and habitat quality from a simulation perspective. In this study, the landscape pattern in 2031 was simulated using a patch-generating simulation (PLUS) model for the Yellow River Basin. Then, the landscape pattern index and habitat quality from 2005 to 2031 were evaluated using the Fragstats 4.2 and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Furthermore, we analyzed the spatial distribution characteristics and spatial spillover effects of habitat quality using spatial autocorrelation analysis. Finally, the spatial association between the landscape pattern index and habitat quality was quantitatively revealed based on a spatial lag model. The simulation results showed that: (1) from 2005 to 2031, the landscape of the Yellow River Basin would be dominated by grassland and unused land, and the areas of construction land and water body will increase significantly, while the area of grassland will decrease; (2) patch density (PD) and Shannon’s diversity index (SHDI) show significant increases, while edge density (ED), landscape shape index (LSI), mean patch area (AREA_MN), and contagion index (CONTAG) decrease; (3) from 2005 to 2031, habitat quality would decrease. The high-value areas of habitat quality are mainly distributed in the upper reaches of the Yellow River Basin, and the low-value areas are distributed in the lower reaches. Meanwhile, both habitat quality and its change rate present positive spatial autocorrelation; and (4) the spatial relationships of habitat quality with PD and COHESION are negative, while ED and LSI have positive impacts on habitat quality. Specifically, landscape fragmentation caused by high PD has a dominant negative influence on habitat quality. Therefore, this study can help decision makers manage future landscape patterns and develop ecological conservation policy in the Yellow River Basin.

Suggested Citation

  • Dike Zhang & Jianpeng Wang & Ying Wang & Lei Xu & Liang Zheng & Bowen Zhang & Yuzhe Bi & Hui Yang, 2022. "Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11974-:d:921764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/11974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/11974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qinglong Ding & Yang Chen & Lingtong Bu & Yanmei Ye, 2021. "Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    2. Guangqing Chi & Jun Zhu, 2008. "Spatial Regression Models for Demographic Analysis," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 27(1), pages 17-42, February.
    3. Fazlolah Ahmadi Mirghaed & Bubak Souri, 2021. "Relationships between habitat quality and ecological properties across Ziarat Basin in northern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16192-16207, November.
    4. Boumans, Roelof & Roman, Joe & Altman, Irit & Kaufman, Les, 2015. "The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems," Ecosystem Services, Elsevier, vol. 12(C), pages 30-41.
    5. Moreira, Miguel & Fonseca, Catarina & Vergílio, Marta & Calado, Helena & Gil, Artur, 2018. "Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores, Portugal)," Land Use Policy, Elsevier, vol. 78(C), pages 637-649.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhao & Mengwei Su & Xueyan Wang & Xiaoqing Li & Xinhan Chang & Pengtao Zhang, 2023. "Spatial–Temporal Evolution and Prediction of Habitat Quality in Beijing–Tianjin–Hebei Region Based on Land Use Change," Land, MDPI, vol. 12(3), pages 1-16, March.
    2. Yi Deng & Ziyi Mao & Jinling Huang & Faling Yan & Shenghai Han & Anqi Li, 2022. "Spatial Patterns of Natural Protected Areas and Construction of Protected Area Groups in Guangdong Province," IJERPH, MDPI, vol. 19(22), pages 1-25, November.
    3. Alicja Krzemień & Juan José Álvarez Fernández & Pedro Riesgo Fernández & Gregorio Fidalgo Valverde & Silverio Garcia-Cortes, 2022. "Restoring Coal Mining-Affected Areas: The Missing Ecosystem Services," IJERPH, MDPI, vol. 19(21), pages 1-13, October.
    4. Bo Li & Hao Ouyang & Tong Wang & Tian Dong, 2023. "Coupling Relationship between Rural Settlement Patterns and Landscape Fragmentation in Woodlands and Biological Reserves—A Case of Nanshan National Park," Land, MDPI, vol. 12(4), pages 1-25, March.
    5. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    6. Ruibing Meng & Jiale Cai & Hui Xin & Zhongju Meng & Xiaohong Dang & Yanlong Han, 2023. "Spatio-Temporal Changes in Land Use and Habitat Quality of Hobq Desert along the Yellow River Section," IJERPH, MDPI, vol. 20(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    2. Ruibing Meng & Jiale Cai & Hui Xin & Zhongju Meng & Xiaohong Dang & Yanlong Han, 2023. "Spatio-Temporal Changes in Land Use and Habitat Quality of Hobq Desert along the Yellow River Section," IJERPH, MDPI, vol. 20(4), pages 1-24, February.
    3. Zheng, Liang & Wang, Ying & Li, Jiangfeng, 2023. "Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China," Land Use Policy, Elsevier, vol. 125(C).
    4. Yang Liu & Jing Zhao & Xi Zheng & Xiaoyang Ou & Yaru Zhang & Jiaying Li, 2023. "Evaluation of Biodiversity Maintenance Capacity in Forest Landscapes: A Case Study in Beijing, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    5. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    6. Xiya Zhang & Haibo Hu, 2019. "Combining Data from Multiple Sources to Evaluate Spatial Variations in the Economic Costs of PM 2.5 -Related Health Conditions in the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 16(20), pages 1-17, October.
    7. Wanxu Chen & Guangqing Chi & Jiangfeng Li, 2020. "Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China," IJERPH, MDPI, vol. 17(10), pages 1-19, May.
    8. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    9. Laura McKinney & Devin C. Wright, 2021. "Climate Change and Water Dynamics in Rural Uganda," Sustainability, MDPI, vol. 13(15), pages 1-12, July.
    10. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    11. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    12. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    13. Shiliang Liu & Yuhong Dong & Hua Liu & Fangfang Wang & Lu Yu, 2023. "Review of Valuation of Forest Ecosystem Services and Realization Approaches in China," Land, MDPI, vol. 12(5), pages 1-16, May.
    14. Jixian Mo & Jie Li & Ziying Wang & Ziwei Song & Jingyi Feng & Yanjing Che & Jiandong Rong & Siyu Gu, 2023. "Spatiotemporal Evolution of Wind Erosion and Ecological Service Assessments in Northern Songnen Plain, China," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    15. Wen Li & Jianwei Geng & Jingling Bao & Wenxiong Lin & Zeyan Wu & Shuisheng Fan, 2023. "Analysis of Spatial and Temporal Variations in Ecosystem Service Functions and Drivers in Anxi County Based on the InVEST Model," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    16. Hannaliis Jaadla & Alice Reid, 2017. "The geography of early childhood mortality in England and Wales, 1881–1911," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(58), pages 1861-1890.
    17. Kenny, Daniel C. & Costanza, Robert & Dowsley, Tom & Jackson, Nichelle & Josol, Jairus & Kubiszewski, Ida & Narulla, Harkiran & Sese, Saioa & Sutanto, Anna & Thompson, Jonathan, 2019. "Australia's Genuine Progress Indicator Revisited (1962–2013)," Ecological Economics, Elsevier, vol. 158(C), pages 1-10.
    18. Hongmi Koo & Janina Kleemann & Christine Fürst, 2018. "Land Use Scenario Modeling Based on Local Knowledge for the Provision of Ecosystem Services in Northern Ghana," Land, MDPI, vol. 7(2), pages 1-21, May.
    19. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    20. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11974-:d:921764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.