IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0317516.html
   My bibliography  Save this article

Comparing statistical learning methods for complex trait prediction from gene expression

Author

Listed:
  • Noah Klimkowski Arango
  • Fabio Morgante

Abstract

Accurate prediction of complex traits is an important task in quantitative genetics. Genotypes have been used for trait prediction using a variety of methods such as mixed models, Bayesian methods, penalized regression methods, dimension reduction methods, and machine learning methods. Recent studies have shown that gene expression levels can produce higher prediction accuracy than genotypes. However, only a few prediction methods were tested in these studies. Thus, a comprehensive assessment of methods is needed to fully evaluate the potential of gene expression as a predictor of complex trait phenotypes. Here, we used data from the Drosophila Genetic Reference Panel (DGRP) to compare the ability of several existing statistical learning methods to predict starvation resistance and startle response from gene expression in the two sexes separately. The methods considered differ in assumptions about the distribution of gene effects—ranging from models that assume that every gene affects the trait to more sparse models—and their ability to capture gene-gene interactions. We also used functional annotation (i.e., Gene Ontology (GO)) as a source of biological information to inform prediction models. The results show that differences in prediction accuracy exist. For example, methods performing variable selection achieved higher prediction accuracy for starvation resistance in females, while they generally had lower accuracy for startle response in both sexes. Incorporating GO annotations further improved prediction accuracy for a few GO terms of biological significance. Biological significance extended to the genes underlying highly predictive GO terms. Notably, the Insulin-like Receptor (InR) was prevalent across methods and sexes for starvation resistance. For startle response, crumbs (crb) and imaginal disc growth factor 2 (Idgf2) were found for females and males, respectively. Our results confirmed the potential of transcriptomic prediction and highlighted the importance of selecting appropriate methods and strategies in order to achieve accurate predictions.

Suggested Citation

  • Noah Klimkowski Arango & Fabio Morgante, 2025. "Comparing statistical learning methods for complex trait prediction from gene expression," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0317516
    DOI: 10.1371/journal.pone.0317516
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317516
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0317516&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0317516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian T. Jolliffe, 1982. "A Note on the Use of Principal Components in Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 300-303, November.
    2. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    4. repec:plo:pgen00:1003608 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    4. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    6. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    7. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    8. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    9. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    10. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
    11. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    12. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    13. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    14. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    15. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    16. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    17. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    18. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    19. Yu-Min Yen, 2010. "A Note on Sparse Minimum Variance Portfolios and Coordinate-Wise Descent Algorithms," Papers 1005.5082, arXiv.org, revised Sep 2013.
    20. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.