IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314237.html
   My bibliography  Save this article

Modeling of lifetime scenarios with non-monotonic failure rates

Author

Listed:
  • Amani Abdullah Alahmadi
  • Olayan Albalawi
  • Rana H Khashab
  • Arne Johannssen
  • Suleman Nasiru
  • Sanaa Mohammed Almarzouki
  • Mohammed Elgarhy

Abstract

The Weibull distribution is an important continuous distribution that is cardinal in reliability analysis and lifetime modeling. On the other hand, it has several limitations for practical applications, such as modeling lifetime scenarios with non-monotonic failure rates. However, accurate modeling of non-monotonic failure rates is essential for achieving more accurate predictions, better risk management, and informed decision-making in various domains where reliability and longevity are critical factors. For this reason, we introduce a new three parameter lifetime distribution—the Modified Kies Weibull distribution (MKWD)—that is able to model lifetime scenarios with non-monotonic failure rates. We analyze the statistical features of the MKWD, such as the quantile function, median, moments, mean, variance, skewness, kurtosis, coefficient of variation, index of dispersion, moment generating function, incomplete moments, conditional moments, Bonferroni, Lorenz, and Zenga curves, and order statistics. Various measures of uncertainty for the MKWD such as Rényi entropy, exponential entropy, Havrda and Charvat entropy, Arimoto entropy, Tsallis entropy, extropy, weighted extropy and residual extropy are computed. We discuss eight different parameter estimation methods and conduct a Monte Carlo simulation study to evaluate the performance of these different estimators. The simulation results show that the maximum likelihood method leads to the best results. The effectiveness of the newly suggested model is demonstrated through the examination of two different sets of real data. Regression analysis utilizing survival times data demonstrates that the MKWD model offers a superior match compared to other current distributions and regression models.

Suggested Citation

  • Amani Abdullah Alahmadi & Olayan Albalawi & Rana H Khashab & Arne Johannssen & Suleman Nasiru & Sanaa Mohammed Almarzouki & Mohammed Elgarhy, 2025. "Modeling of lifetime scenarios with non-monotonic failure rates," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-43, January.
  • Handle: RePEc:plo:pone00:0314237
    DOI: 10.1371/journal.pone.0314237
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314237
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314237&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Longxiang & Zhang, Xinsheng, 2015. "Stochastic comparisons of parallel systems with exponentiated Weibull components," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 25-31.
    2. Hazhir Homei & Saralees Nadarajah, 2018. "On Products and Mixed Sums of Gamma and Beta Random Variables Motivated by Availability," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 799-810, June.
    3. Shakhawat Hossain & Shahedul A. Khan, 2020. "Shrinkage estimation of the exponentiated Weibull regression model for time‐to‐event data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 592-610, November.
    4. Barmalzan, Ghobad & Najafabadi, Amir T. Payandeh & Balakrishnan, Narayanaswamy, 2015. "Stochastic comparison of aggregate claim amounts between two heterogeneous portfolios and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 235-241.
    5. Haselsteiner, Andreas F. & Thoben, Klaus-Dieter, 2020. "Predicting wave heights for marine design by prioritizing extreme events in a global model," Renewable Energy, Elsevier, vol. 156(C), pages 1146-1157.
    6. Tommaso Lando & Lucio Bertoli-Barsotti, 2020. "Stochastic dominance relations for generalised parametric distributions obtained through composition," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 297-311, December.
    7. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    8. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.
    9. Haitham M. Yousof & Mustafa Ç. Korkmaz & Subhradev Sen, 2021. "A New Two-Parameter Lifetime Model," Annals of Data Science, Springer, vol. 8(1), pages 91-106, March.
    10. Cleanderson R. Fidelis & Edwin M. M. Ortega & Gauss M. Cordeiro, 2024. "Residual Analysis for Poisson-Exponentiated Weibull Regression Models with Cure Fraction," Stats, MDPI, vol. 7(2), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.