IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0313425.html
   My bibliography  Save this article

Examining heterogeneity in dementia using data-driven unsupervised clustering of cognitive profiles

Author

Listed:
  • Sayantan Kumar
  • Inez Y Oh
  • Suzanne E Schindler
  • Nupur Ghoshal
  • Zachary Abrams
  • Philip R O Payne

Abstract

Dementia is characterized by a decline in memory and thinking that is significant enough to impair function in activities of daily living. Patients seen in dementia specialty clinics are highly heterogenous with a variety of different symptoms that progress at different rates. Recent research has focused on finding data-driven subtypes for revealing new insights into dementia’s underlying heterogeneity, rather than assuming that the cohort is homogenous. However, current studies on dementia subtyping have the following limitations: (i) focusing on AD-related dementia only and not examining heterogeneity within dementia as a whole, (ii) using only cross-sectional baseline visit information for clustering and (iii) predominantly relying on expensive imaging biomarkers as features for clustering. In this study, we seek to overcome such limitations, using a data-driven unsupervised clustering algorithm named SillyPutty, in combination with hierarchical clustering on cognitive assessment scores to estimate subtypes within a real-world clinical dementia cohort. We use a longitudinal patient data set for our clustering analysis, instead of relying only on baseline visits, allowing us to explore the ongoing temporal relationship between subtypes and disease progression over time. Results showed that subtypes with very mild or mild dementia were more heterogenous in their cognitive profiles and risk of disease progression.

Suggested Citation

  • Sayantan Kumar & Inez Y Oh & Suzanne E Schindler & Nupur Ghoshal & Zachary Abrams & Philip R O Payne, 2024. "Examining heterogeneity in dementia using data-driven unsupervised clustering of cognitive profiles," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0313425
    DOI: 10.1371/journal.pone.0313425
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313425
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0313425&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0313425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Polina Bombina & Dwayne Tally & Zachary B Abrams & Kevin R Coombes, 2024. "SillyPutty: Improved clustering by optimizing the silhouette width," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-17, June.
    2. Alexandra L Young & Razvan V Marinescu & Neil P Oxtoby & Martina Bocchetta & Keir Yong & Nicholas C Firth & David M Cash & David L Thomas & Katrina M Dick & Jorge Cardoso & John Swieten & Barbara Borr, 2018. "Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    3. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    2. Roy Cerqueti & Antonio Iovanella & Raffaele Mattera, 2024. "Clustering networked funded European research activities through rank-size laws," Annals of Operations Research, Springer, vol. 342(3), pages 1707-1735, November.
    3. Michał Fiedler, 2021. "The Effects of Land Use on Concentrations of Nutrients and Selected Metals in Bottom Sediments and the Risk Assessment for Rivers of the Warta River Catchment, Poland," Land, MDPI, vol. 10(6), pages 1-20, June.
    4. Etienne Maheux & Igor Koval & Juliette Ortholand & Colin Birkenbihl & Damiano Archetti & Vincent Bouteloup & Stéphane Epelbaum & Carole Dufouil & Martin Hofmann-Apitius & Stanley Durrleman, 2023. "Forecasting individual progression trajectories in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Konstantinos Poulakis & Joana B. Pereira & J.-Sebastian Muehlboeck & Lars-Olof Wahlund & Örjan Smedby & Giovanni Volpe & Colin L. Masters & David Ames & Yoshiki Niimi & Takeshi Iwatsubo & Daniel Ferre, 2022. "Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Shan Zhong & David B. Hitchcock, 2024. "Functional clustering of fictional narratives using Vonnegut curves," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 1045-1066, December.
    7. Michael Tran Duong & Sandhitsu R. Das & Xueying Lyu & Long Xie & Hayley Richardson & Sharon X. Xie & Paul A. Yushkevich & David A. Wolk & Ilya M. Nasrallah, 2022. "Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Yuchao Jiang & Wei Li & Jinmei Li & Xiuli Li & Heng Zhang & Xiutian Sima & Luying Li & Kang Wang & Qifu Li & Jiajia Fang & Lu Jin & Qiyong Gong & Dezhong Yao & Dong Zhou & Cheng Luo & Dongmei An, 2024. "Identification of four biotypes in temporal lobe epilepsy via machine learning on brain images," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Zhijian Yang & Ilya M. Nasrallah & Haochang Shou & Junhao Wen & Jimit Doshi & Mohamad Habes & Guray Erus & Ahmed Abdulkadir & Susan M. Resnick & Marilyn S. Albert & Paul Maruff & Jurgen Fripp & John C, 2021. "A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Valentina Masarotto & Guido Masarotto, 2024. "Covariance‐based soft clustering of functional data based on the Wasserstein–Procrustes metric," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 485-512, June.
    11. Sophie E. Mastenbroek & Jacob W. Vogel & Lyduine E. Collij & Geidy E. Serrano & Cécilia Tremblay & Alexandra L. Young & Richard A. Arce & Holly A. Shill & Erika D. Driver-Dunckley & Shyamal H. Mehta &, 2024. "Disease progression modelling reveals heterogeneity in trajectories of Lewy-type α-synuclein pathology," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.