IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0312601.html
   My bibliography  Save this article

SE-MAConvLSTM: A deep learning framework for short-term traffic flow prediction combining Squeeze-and-Excitation Network and Multi-Attention Convolutional LSTM Network

Author

Listed:
  • Rong Zhu
  • Jie Tang
  • Xuansen He
  • Xianlai Zhou
  • Xiaohui Huang
  • Fengyun Wu
  • Songli Chen

Abstract

Traffic flow prediction is an important part of transportation management and planning. For example, accurate demand prediction of taxis and online car-hailing can reduce the waste of resources caused by empty cars. The prediction of public bicycle flow can be more reasonable to plan the release and deployment of public bicycles. There are three difficulties in traffic flow prediction to achieve higher accuracy. Firstly, more accurately to capture the spatio-temporal correlation existing in historical flow data. Secondly, the weight of each channel in the traffic flow data at the same time interval affects the prediction results. Thirdly, the proportion of closeness, period and trend of traffic flow data affects the prediction results. In this paper, we design a deep learning algorithm for short-term traffic flow prediction, called SE-MAConvLSTM. First, we designed Spatio-Temporal Feature Extraction Module (STFEM), which is composed of Convolutional Neural Network (CNN), Squeeze-and-Excitation Network (SENet), Residual Network (ResNet) and Convolutional LSTM Network (ConvLSTM) to solve the above two problems mentioned. In addition, we design multi-attention modules (MAM) to model the closeness, period and trend of traffic flow data to solve the third problem mentioned above. Finally, the aggregation module was used to integrate the output of the last time interval in STFEM and the output of the multi-attention module. Experiments are carried out on two real data sets, and the results show that the proposed model reduces RMSE by 4.5% and 3.7% respectively compared with the best baseline model.

Suggested Citation

  • Rong Zhu & Jie Tang & Xuansen He & Xianlai Zhou & Xiaohui Huang & Fengyun Wu & Songli Chen, 2024. "SE-MAConvLSTM: A deep learning framework for short-term traffic flow prediction combining Squeeze-and-Excitation Network and Multi-Attention Convolutional LSTM Network," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0312601
    DOI: 10.1371/journal.pone.0312601
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312601
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0312601&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0312601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Lin Shang, 2023. "Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 421-441, September.
    2. Kokoszka, Piotr & Oja, Hanny & Park, Byeong & Sangalli, Laura, 2017. "Special issue on functional data analysis," Econometrics and Statistics, Elsevier, vol. 1(C), pages 99-100.
    3. Tomáš Rubín & Victor M. Panaretos, 2020. "Functional lagged regression with sparse noisy observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 858-882, November.
    4. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
    6. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    7. Shang Han Lin, 2020. "A Comparison of Hurst Exponent Estimators in Long-range Dependent Curve Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-39, January.
    8. Luke Durell & J. Thad Scott & Douglas Nychka & Amanda S. Hering, 2023. "Functional forecasting of dissolved oxygen in high‐frequency vertical lake profiles," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    9. Yizheng Fu & Zhifang Su & Aihua Lin, 2024. "Functional Cointegration Test for Expectation Hypothesis of the Term Structure of Interest Rates in China," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(4), pages 799-820, December.
    10. Han Lin Shang & Kaiying Ji, 2023. "Forecasting intraday financial time series with sieve bootstrapping and dynamic updating," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1973-1988, December.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
    13. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
    14. Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    15. Berger, David, 2020. "Lévy driven CARMA generalized processes and stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5865-5887.
    16. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
    17. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Holger Fink & Andreas Fuest & Henry Port, 2018. "The Impact of Sovereign Yield Curve Differentials on Value-at-Risk Forecasts for Foreign Exchange Rates," Risks, MDPI, vol. 6(3), pages 1-19, August.
    19. Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
    20. Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.