IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i10p5865-5887.html

Lévy driven CARMA generalized processes and stochastic partial differential equations

Author

Listed:
  • Berger, David

Abstract

We give a new definition of a Lévy driven CARMA random field, defining it as a generalized solution of a stochastic partial differential equation (SPDE). Furthermore, we give sufficient conditions for the existence of a mild solution of our SPDE. Our model unifies all known definitions of CARMA random fields, and in particular for dimension 1 we obtain the classical CARMA process.

Suggested Citation

  • Berger, David, 2020. "Lévy driven CARMA generalized processes and stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5865-5887.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:5865-5887
    DOI: 10.1016/j.spa.2020.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491930328X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    2. M. Ghahramani & A. Thavaneswaran, 2006. "Financial applications of ARMA models with GARCH errors," Journal of Risk Finance, Emerald Group Publishing, vol. 7(5), pages 525-543, November.
    3. Peter J. Brockwell & Vincenzo Ferrazzano & Claudia Klüppelberg, 2013. "High-frequency sampling and kernel estimation for continuous-time moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 385-404, May.
    4. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fageot, Julien & Humeau, Thomas, 2021. "The domain of definition of the Lévy white noise," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 75-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.
    2. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    3. Ernst, Philip A. & Brown, Lawrence D. & Shepp, Larry & Wolpert, Robert L., 2017. "Stationary Gaussian Markov processes as limits of stationary autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 180-186.
    4. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    5. Han Lin Shang, 2023. "Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 421-441, September.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    8. Kokoszka, Piotr & Oja, Hanny & Park, Byeong & Sangalli, Laura, 2017. "Special issue on functional data analysis," Econometrics and Statistics, Elsevier, vol. 1(C), pages 99-100.
    9. Xinli Yu & Zheng Chen & Yuan Ling & Shujing Dong & Zongyi Liu & Yanbin Lu, 2023. "Temporal Data Meets LLM -- Explainable Financial Time Series Forecasting," Papers 2306.11025, arXiv.org.
    10. Benth, Fred Espen & Taib, Che Mohd Imran Che, 2013. "On the speed towards the mean for continuous time autoregressive moving average processes with applications to energy markets," Energy Economics, Elsevier, vol. 40(C), pages 259-268.
    11. Florian Fuchs & Robert Stelzer, 2013. "Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes," Journal of Theoretical Probability, Springer, vol. 26(2), pages 410-436, June.
    12. Peter J. Brockwell & Yasumasa Matsuda, 2015. "Levy-driven CARMA Random Fields on Rn," TERG Discussion Papers 339, Graduate School of Economics and Management, Tohoku University.
    13. Tomáš Rubín & Victor M. Panaretos, 2020. "Functional lagged regression with sparse noisy observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 858-882, November.
    14. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.
    15. Ole E. Barndorff-Nielsen & Orimar Sauri & Benedykt Szozda, 2017. "Selfdecomposable Fields," Journal of Theoretical Probability, Springer, vol. 30(1), pages 233-267, March.
    16. Kyungsik Nam & Won-Ki Seo, 2025. "Functional Regression with Nonstationarity and Error Contamination: Application to the Economic Impact of Climate Change," Papers 2509.08591, arXiv.org, revised Oct 2025.
    17. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
    19. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    20. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:5865-5887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.