IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0304674.html
   My bibliography  Save this article

Identifying critical growth stage and resilient genotypes in cowpea under drought stress contributes to enhancing crop tolerance for improvement and adaptation in Cameroon

Author

Listed:
  • Toscani Ngompe Deffo
  • Eric Bertrand Kouam
  • Marie Solange Mandou
  • Raba Allah-To Bara
  • Asafor Henry Chotangui
  • Adamou Souleymanou
  • Honore Beyegue Djonko
  • Christopher Mubeteneh Tankou

Abstract

Drought stress following climate change is likely a scenario that will have to face crop growers in tropical regions. In mitigating this constraint, the best option should be the selection and use of resilient varieties that can withstand drought threats. Therefore, a pot experiment was conducted under greenhouse conditions at the Research and Teaching Farm of the Faculty of Agronomy and Agricultural Sciences of the University of Dschang. The objectives are to identify sensitive growth stage, to identify drought-tolerant genotypes with the help of yield-based selection indices and to identify suitable selection indices that are associated with yield under non-stress and stress circumstances. Eighty-eight cowpea genotypes from the sahelian and western regions of Cameroon were subjected to drought stress at vegetative (VDS) and flowering (FDS) stages by withholding water for 28 days, using a split plot design with two factors and three replications. Seed yields under stress (Ys) and non-stress (Yp) conditions were recorded. Fifteen drought indices were calculated for the two drought stress levels against the yield from non-stress plants. Drought Intensity Index (DII) under VDS and FDS were 0.71 and 0.84 respectively, indicating severe drought stress for both stages. However, flowering stage was significantly more sensitive to drought stress compared to vegetative stage. Based on PCA and correlation analysis, Stress Tolerance Index (STI), Relative Efficiency Index (REI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI) and Harmonic Mean (HM) correlated strongly with yield under stress and non-stress conditions and are therefore suitable to discriminate high-yielding and tolerant genotypes under both stress and non-stress conditions. Either under VDS and FDS, CP-016 exhibited an outstanding performance under drought stress and was revealed as the most drought tolerant genotype as shown by ranking, PCA and cluster analysis. Taking into account all indices, the top five genotypes namely CP-016, CP-021, MTA-22, CP-056 and CP-060 were identified as the most drought-tolerant genotypes under VDS. For stress activated at flowering stage (FDS), CP-016, CP-056, CP-021, CP-028 and MTA-22 were the top five most drought-tolerant genotypes. Several genotypes with insignificant Ys and irrelevant rank among which CP-037, NDT-001, CP-036, CP-034, NDT-002, CP-031, NDT-011 were identified as highly drought sensitive with low yield stability. This study identified the most sensitive stage and drought tolerant genotypes that are proposed for genetic improvement of cowpea.

Suggested Citation

  • Toscani Ngompe Deffo & Eric Bertrand Kouam & Marie Solange Mandou & Raba Allah-To Bara & Asafor Henry Chotangui & Adamou Souleymanou & Honore Beyegue Djonko & Christopher Mubeteneh Tankou, 2024. "Identifying critical growth stage and resilient genotypes in cowpea under drought stress contributes to enhancing crop tolerance for improvement and adaptation in Cameroon," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-25, June.
  • Handle: RePEc:plo:pone00:0304674
    DOI: 10.1371/journal.pone.0304674
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304674
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0304674&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0304674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saleem A. Salman & Shamsuddin Shahid & Ahmad Sharafati & Golam Saleh Ahmed Salem & Amyrhul Abu Bakar & Aitazaz Ahsan Farooque & Eun-Sung Chung & Yaseen Adnan Ahmed & Bryukhov Mikhail & Zaher Mundher Y, 2021. "Projection of Agricultural Water Stress for Climate Change Scenarios: A Regional Case Study of Iraq," Agriculture, MDPI, vol. 11(12), pages 1-16, December.
    2. El Balla, M.M.A. & Hamid, Abdelbagi A. & Abdelmageed, A.H.A., 2013. "Effects of time of water stress on flowering, seed yield and seed quality of common onion (Allium cepa L.) under the arid tropical conditions of Sudan," Agricultural Water Management, Elsevier, vol. 121(C), pages 149-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    2. Janjua, Shahmir & An-Vo, Duc-Anh & Reardon-Smith, Kathryn & Mushtaq, Shahbaz, 2024. "Resolving water security conflicts in agriculture by a cooperative Nash bargaining approach," Agricultural Water Management, Elsevier, vol. 306(C).
    3. Mohd Sayeed Ul Hasan & Mufti Mohammad Saif & Nehal Ahmad & Abhishek Kumar Rai & Mohammad Amir Khan & Ali Aldrees & Wahaj Ahmad Khan & Mustafa K. A. Mohammed & Zaher Mundher Yaseen, 2023. "Spatiotemporal Analysis of Future Trends in Terrestrial Water Storage Anomalies at Different Climatic Zones of India Using GRACE/GRACE-FO," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    4. Wakchaure, G.C. & Minhas, P.S. & Meena, Kamlesh K. & Singh, Narendra P. & Hegade, Priti M. & Sorty, Ajay M., 2018. "Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators," Agricultural Water Management, Elsevier, vol. 199(C), pages 1-10.
    5. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & Deli Liu, 2022. "Future Projection for Climate Suitability of Summer Maize in the North China Plain," Agriculture, MDPI, vol. 12(3), pages 1-20, February.
    6. Mohammed Magdy Hamed & Mohamed Salem Nashwan & Mohammed Sanusi Shiru & Shamsuddin Shahid, 2022. "Comparison between CMIP5 and CMIP6 Models over MENA Region Using Historical Simulations and Future Projections," Sustainability, MDPI, vol. 14(16), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.