IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0299897.html
   My bibliography  Save this article

Understanding the impact of network structure on air travel pattern at different scales

Author

Listed:
  • Hoai Nguyen Huynh
  • Kuan Luen Ng
  • Roy Toh
  • Ling Feng

Abstract

This study examines the global air travel demand pattern using complex network analysis. Using the data for the top 50 airports based on passenger volume rankings, we investigate the relationship between network measures of nodes (airports) in the global flight network and their passenger volume. The analysis explores the network measures at various spatial scales, from individual airports to metropolitan areas and countries. Different attributes, such as flight route length and the number of airlines, are considered in the analysis. Certain attributes are found to be more relevant than others, and specific network measure models are found to better capture the dynamics of global air travel demand than others. Among the models, PageRank is found to be the most correlated with total passenger volume. Moreover, distance-based measures perform worse than the ones emphasising the number of airlines, particularly those counting the number of airlines operating a route, including codeshare. Using the PageRank score weighted by the number of airlines, we find that airports in Asian cities tend to have more traffic than expected, while European and North American airports have the potential to attract more passenger volume given their connectivity pattern. Additionally, we combine the network measures with socio-economic variables such as population and GDP to show that the network measures could greatly augment the traditional approaches to modelling and predicting air travel demand. We’ll also briefly discuss the implications of the findings in this study for airport planning and airline industry strategy.

Suggested Citation

  • Hoai Nguyen Huynh & Kuan Luen Ng & Roy Toh & Ling Feng, 2024. "Understanding the impact of network structure on air travel pattern at different scales," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0299897
    DOI: 10.1371/journal.pone.0299897
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299897
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0299897&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0299897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kağan Albayrak, Muhammed Bilge & Özcan, İsmail Çağrı & Can, Raif & Dobruszkes, Frédéric, 2020. "The determinants of air passenger traffic at Turkish airports," Journal of Air Transport Management, Elsevier, vol. 86(C).
    2. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    3. Chang, Li-Yen, 2012. "International air passenger flows between pairs of APEC countries: A non-parametric regression tree approach," Journal of Air Transport Management, Elsevier, vol. 20(C), pages 4-6.
    4. Jingyi Lin & Yifang Ban, 2013. "Complex Network Topology of Transportation Systems," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 658-685, November.
    5. Grosche, Tobias & Rothlauf, Franz & Heinzl, Armin, 2007. "Gravity models for airline passenger volume estimation," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 175-183.
    6. Yahua Zhang & Anming Zhang, 2016. "Determinants of Air Passenger Flows in China and Gravity Model: Deregulation, LCCs, and High-speed Rail," Journal of Transport Economics and Policy, University of Bath, vol. 50(3), pages 287-28-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    2. Dobruszkes, Frédéric & Vandermotten, Christian, 2022. "Do scale and the type of markets matter? Revisiting the determinants of passenger air services worldwide," Journal of Air Transport Management, Elsevier, vol. 99(C).
    3. Zhang, Lu & Gong, Jiaying, 2024. "Decoding air passenger flows: Identifying the role of network autocorrelation in air travel," Journal of Air Transport Management, Elsevier, vol. 120(C).
    4. Frédéric Dobruszkes & Christian Vandermotten, 2022. "Do scale and the type of markets matter? Revisiting the determinants of passenger air services worldwide," ULB Institutional Repository 2013/336304, ULB -- Universite Libre de Bruxelles.
    5. Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).
    6. Hanson, Daniel & Toru Delibasi, Tuba & Gatti, Matteo & Cohen, Shamai, 2022. "How do changes in economic activity affect air passenger traffic? The use of state-dependent income elasticities to improve aviation forecasts," Journal of Air Transport Management, Elsevier, vol. 98(C).
    7. Wang, Yu-Chen & Wong, Jinn-Tsai, 2019. "Exploring air network formation and development with a two-part model," Journal of Transport Geography, Elsevier, vol. 75(C), pages 122-131.
    8. Chang, Li-Yen, 2014. "Analysis of bilateral air passenger flows: A non-parametric multivariate adaptive regression spline approach," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 123-130.
    9. Zhou, Heng & Xia, Jianhong (Cecilia) & Luo, Qingzhou & Nikolova, Gabi & Sun, Jie & Hughes, Brett & Kelobonye, Keone & Wang, Hui & Falkmer, Torbjorn, 2018. "Investigating the impact of catchment areas of airports on estimating air travel demand: A case study of regional Western Australia," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 91-103.
    10. Tirtha, Sudipta Dey & Bhowmik, Tanmoy & Eluru, Naveen, 2023. "Understanding the factors affecting airport level demand (arrivals and departures) using a novel modeling approach," Journal of Air Transport Management, Elsevier, vol. 106(C).
    11. Tuğba Dayioglu & Serdar Alnipak, 2023. "Dynamic effecting factors of air travel demand: an econometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3713-3727, August.
    12. Tirtha, Sudipta Dey & Bhowmik, Tanmoy & Eluru, Naveen, 2024. "Accommodating spatio-temporal dependency in airline demand modeling," Journal of Air Transport Management, Elsevier, vol. 116(C).
    13. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    14. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    15. Chen, Jieh-Haur & Wei, Hsi-Hsien & Chen, Chih-Lin & Wei, Hsin-Yi & Chen, Yi-Ping & Ye, Zhongnan, 2020. "A practical approach to determining critical macroeconomic factors in air-traffic volume based on K-means clustering and decision-tree classification," Journal of Air Transport Management, Elsevier, vol. 82(C).
    16. Lin, Yi & Zhang, Jianwei & Yang, Bo & Liu, Hong & Zhao, Liping, 2019. "An optimal routing strategy for transport networks with minimal transmission cost and high network capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 551-561.
    17. Dai, Liang & Derudder, Ben & Liu, Xingjian, 2018. "Transport network backbone extraction: A comparison of techniques," Journal of Transport Geography, Elsevier, vol. 69(C), pages 271-281.
    18. César Ducruet & Hidekazu Itoh & Justin Berli, 2020. "Urban gravity in the global container shipping network," Post-Print halshs-02588449, HAL.
    19. Qian, Peipei & Yang, Zhongzhen & Lian, Feng, 2024. "The structural and spatial evolution of the China Railway Express network," Research in Transportation Economics, Elsevier, vol. 103(C).
    20. Yuetao Wang & Chengbin Wu & Binglu Wu & Jilong Zhao & Hanyang Wang, 2025. "Evaluation of Spatial Structure Resilience in Coastal Traditional Villages Using Complex Network Analysis: Case Study of Rongcheng City, Shandong Province," Land, MDPI, vol. 14(3), pages 1-29, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.