IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0299635.html
   My bibliography  Save this article

A developed DQ control method for shunt active power filter to improve power quality in transformers

Author

Listed:
  • Saad F Al-Gahtani
  • Z M S Elbarbary
  • Shaik Mohammad Irshad

Abstract

Power transformers are the most important component in power system. Exposing these transformers to the harmonic distortions causes additional heat losses, insulation stress, decrease in lifetime of insulation, and reduced power factor with decrease in efficiency of the system. The lifespan of distribution transformers is influenced by the fragility of power quality in power networks. Harmonic mitigation filters with robust control technique are required to reduce the harmonic effects on power transformer. Traditionally, synchronous reference frame (DQ) is employed to control the shunt active power filter (APF) for mitigation of harmonics in power transformers. DQ control of Shunt APF lacks merits of fast response, delayed operation due to phased lock loop under abnormal grid conditions leading to insufficient harmonic elimination. A developed DQ method based on detecting the positive and negative sequence components is proposed to precisely control the shunt APF for reliable operation of power transformer. This detection technique improves the response time, mitigate the harmonics effecting the operation of transformer and overall power factor. The proposed control system is evaluated under different abnormal operating scenarios and compared with traditional DQ method. The results and analysis confirm the efficacy of the developed DQ method in improving the power transformer performance.

Suggested Citation

  • Saad F Al-Gahtani & Z M S Elbarbary & Shaik Mohammad Irshad, 2024. "A developed DQ control method for shunt active power filter to improve power quality in transformers," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0299635
    DOI: 10.1371/journal.pone.0299635
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299635
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0299635&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0299635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hamed Mashinchi Maheri & Dmitri Vinnikov & Andrii Chub & Vadim Sidorov & Elizaveta Liivik, 2020. "Impact of Transformer Turns Ratio on the Power Losses and Efficiency of the Wide Range Isolated Buck–Boost Converter for Photovoltaic Applications," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Ayesha Khan & Mujtaba Hussain Jaffery & Yaqoob Javed & Jehangir Arshad & Ateeq Ur Rehman & Rabia Khan & Mohit Bajaj & Mohammed K. A. Kaabar, 2021. "Hardware-in-the-Loop Implementation and Performance Evaluation of Three-Phase Hybrid Shunt Active Power Filter for Power Quality Improvement," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-23, October.
    3. Grabowski, Dariusz & Maciążek, Marcin & Pasko, Marian & Piwowar, Anna, 2018. "Time-invariant and time-varying filters versus neural approach applied to DC component estimation in control algorithms of active power filters," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 203-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayesha Ali & Ateeq Ur Rehman & Ahmad Almogren & Elsayed Tag Eldin & Muhammad Kaleem, 2022. "Application of Deep Learning Gated Recurrent Unit in Hybrid Shunt Active Power Filter for Power Quality Enhancement," Energies, MDPI, vol. 15(20), pages 1-21, October.
    2. Raffay Rizwan & Jehangir Arshad & Ahmad Almogren & Mujtaba Hussain Jaffery & Adnan Yousaf & Ayesha Khan & Ateeq Ur Rehman & Muhammad Shafiq, 2021. "Implementation of ANN-Based Embedded Hybrid Power Filter Using HIL-Topology with Real-Time Data Visualization through Node-RED," Energies, MDPI, vol. 14(21), pages 1-33, November.
    3. Araoye, Timothy Oluwaseun & Ashigwuike, Evans Chinemezu & Mbunwe, Muncho Josephine & Bakinson, Oladipupo Idris & Ozue, ThankGod Izuchukwu, 2024. "Techno-economic modeling and optimal sizing of autonomous hybrid microgrid renewable energy system for rural electrification sustainability using HOMER and grasshopper optimization algorithm," Renewable Energy, Elsevier, vol. 229(C).
    4. Eslami, Ahmadreza & Negnevitsky, Michael & Franklin, Evan & Lyden, Sarah, 2022. "Review of AI applications in harmonic analysis in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.