IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0298064.html
   My bibliography  Save this article

Elzaki residual power series method to solve fractional diffusion equation

Author

Listed:
  • Rajendra Pant
  • Geeta Arora
  • Homan Emadifar

Abstract

The time-fractional order differential equations are used in many different contexts to analyse the integrated scientific phenomenon. Hence these equations are the point of interest of the researchers. In this work, the diffusion equation for a one-dimensional time-fractional order is solved using a combination of residual power series method with Elzaki transforms. The residual power series approach is a useful technique for finding approximate analytical solutions of fractional differential equations that needs the residual function’s (n-1)α derivative. Since it is challenging to determine a function’s fractional-order derivative, the traditional residual power series method’s application is somewhat constrained. The Elzaki transform with residual power series method is an attempt to get over the limitations of the residual power series method. The obtained numerical solutions are compared with the exact solution of this equation to discuss the method’s applicability and efficiency. The results are also graphically displayed to show how the fractional derivative influences the behaviour of the solutions to the suggested method.

Suggested Citation

  • Rajendra Pant & Geeta Arora & Homan Emadifar, 2024. "Elzaki residual power series method to solve fractional diffusion equation," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0298064
    DOI: 10.1371/journal.pone.0298064
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298064
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298064&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0298064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. El-Ajou, Ahmad & Abu Arqub, Omar & Al-Smadi, Mohammed, 2015. "A general form of the generalized Taylor’s formula with some applications," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 851-859.
    2. Alquran, Marwan & Jaradat, Imad, 2019. "Delay-asymptotic solutions for the time-fractional delay-type wave equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    3. Jaradat, I. & Al-Dolat, M. & Al-Zoubi, K. & Alquran, M., 2018. "Theory and applications of a more general form for fractional power series expansion," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 107-110.
    4. Muhammmad Ikram & Abbas Muhammad & Atiq Ur Rahmn, 2019. "Analytic Solution To Benjamin-Bona-Mahony Equation By Using Laplace Adomian Decomposition Method," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 3(1), pages 1-4, January.
    5. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alquran, Marwan & Yousef, Feras & Alquran, Farah & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2021. "Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 62-76.
    2. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    4. Khirsariya, Sagar R. & Chauhan, Jignesh P. & Rao, Snehal B., 2024. "A robust computational analysis of residual power series involving general transform to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 168-186.
    5. Rao, Anjali & Vats, Ramesh Kumar & Yadav, Sanjeev, 2024. "Numerical study of nonlinear time-fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising in propagation of waves," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Ali, Khalid K. & Wazwaz, Abdul-Majid & Maneea, M., 2024. "Efficient solutions for fractional Tsunami shallow-water mathematical model: A comparative study via semi analytical techniques," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Jaradat, I. & Al-Dolat, M. & Al-Zoubi, K. & Alquran, M., 2018. "Theory and applications of a more general form for fractional power series expansion," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 107-110.
    8. Shadimetov, Kh.M. & Hayotov, A.R. & Nuraliev, F.A., 2016. "Optimal quadrature formulas of Euler–Maclaurin type," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 340-355.
    9. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Mohammed Shqair & Ahmad El-Ajou & Mazen Nairat, 2019. "Analytical Solution for Multi-Energy Groups of Neutron Diffusion Equations by a Residual Power Series Method," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    11. Jaradat, Imad & Alquran, Marwan & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2022. "Analytic simulation of the synergy of spatial-temporal memory indices with proportional time delay," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    12. Aylin Bayrak, Mine & Demir, Ali, 2018. "A new approach for space-time fractional partial differential equations by residual power series method," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 215-230.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0298064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.