IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295542.html
   My bibliography  Save this article

Transcriptomic meta-analysis reveals ERRα-mediated oxidative phosphorylation is downregulated in Fuchs’ endothelial corneal dystrophy

Author

Listed:
  • Xunzhi Zhang
  • Ashwani Kumar
  • Adwait A Sathe
  • V Vinod Mootha
  • Chao Xing

Abstract

Background: Late-onset Fuchs’ endothelial corneal dystrophy (FECD) is a degenerative disease of cornea and the leading indication for corneal transplantation. Genetically, FECD patients can be categorized as with (RE+) or without (RE-) the CTG trinucleotide repeat expansion in the transcription factor 4 gene. The molecular mechanisms underlying FECD remain unclear, though there are plausible pathogenic models proposed for RE+ FECD. Method: In this study, we performed a meta-analysis on RNA sequencing datasets of FECD corneal endothelium including 3 RE+ datasets and 2 RE- datasets, aiming to compare the transcriptomic profiles of RE+ and RE- FECD. Gene differential expression analysis, co-expression networks analysis, and pathway analysis were conducted. Results: There was a striking similarity between RE+ and RE- transcriptomes. There were 1,184 genes significantly upregulated and 1,018 genes significantly downregulated in both RE+ and RE- cases. Pathway analysis identified multiple biological processes significantly enriched in both—mitochondrial functions, energy-related processes, ER-nucleus signaling pathway, demethylation, and RNA splicing were negatively enriched, whereas small GTPase mediated signaling, actin-filament processes, extracellular matrix organization, stem cell differentiation, and neutrophil mediated immunity were positively enriched. The translational initiation process was downregulated in the RE+ transcriptomes. Gene co-expression analysis identified modules with relatively distinct biological processes enriched including downregulation of mitochondrial respiratory chain complex assembly. The majority of oxidative phosphorylation (OXPHOS) subunit genes, as well as their upstream regulator gene estrogen-related receptor alpha (ESRRA), encoding ERRα, were downregulated in both RE+ and RE- cases, and the expression level of ESRRA was correlated with that of OXPHOS subunit genes. Conclusion: Meta-analysis increased the power of detecting differentially expressed genes. Integrating differential expression analysis with co-expression analysis helped understand the underlying molecular mechanisms. FECD RE+ and RE- transcriptomic profiles are much alike with the hallmark of downregulation of genes in pathways related to ERRα-mediated OXPHOS.

Suggested Citation

  • Xunzhi Zhang & Ashwani Kumar & Adwait A Sathe & V Vinod Mootha & Chao Xing, 2023. "Transcriptomic meta-analysis reveals ERRα-mediated oxidative phosphorylation is downregulated in Fuchs’ endothelial corneal dystrophy," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-21, December.
  • Handle: RePEc:plo:pone00:0295542
    DOI: 10.1371/journal.pone.0295542
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295542
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295542&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.
    2. Natalie A. Afshari & Robert P. Igo & Nathan J. Morris & Dwight Stambolian & Shiwani Sharma & V. Lakshmi Pulagam & Steven Dunn & John F. Stamler & Barbara J. Truitt & Jacqueline Rimmler & Abraham Kuot , 2017. "Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    2. Jenna Lihavainen & Jan Šimura & Pushan Bag & Nazeer Fataftah & Kathryn Megan Robinson & Nicolas Delhomme & Ondřej Novák & Karin Ljung & Stefan Jansson, 2023. "Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    4. Kazuhisa Shibata & Takeo Watanabe & Mitsuo Kawato & Yuka Sasaki, 2016. "Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-27, September.
    5. James R Roede & Karan Uppal & Youngja Park & Kichun Lee & Vilinh Tran & Douglas Walker & Frederick H Strobel & Shannon L Rhodes & Beate Ritz & Dean P Jones, 2013. "Serum Metabolomics of Slow vs. Rapid Motor Progression Parkinson’s Disease: a Pilot Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    6. Rinku Sharma & Garima Singh & Sudeepto Bhattacharya & Ashutosh Singh, 2018. "Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    7. Shinya Tasaki & Jishu Xu & Denis R. Avey & Lynnaun Johnson & Vladislav A. Petyuk & Robert J. Dawe & David A. Bennett & Yanling Wang & Chris Gaiteri, 2022. "Inferring protein expression changes from mRNA in Alzheimer’s dementia using deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Kynon J. M. Benjamin & Ria Arora & Arthur S. Feltrin & Geo Pertea & Hunter H. Giles & Joshua M. Stolz & Laura D’Ignazio & Leonardo Collado-Torres & Joo Heon Shin & William S. Ulrich & Thomas M. Hyde &, 2024. "Sex affects transcriptional associations with schizophrenia across the dorsolateral prefrontal cortex, hippocampus, and caudate nucleus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Yuhao Min & Xue Wang & Özkan İş & Tulsi A. Patel & Junli Gao & Joseph S. Reddy & Zachary S. Quicksall & Thuy Nguyen & Shu Lin & Frederick Q. Tutor-New & Jessica L. Chalk & Adriana O. Mitchell & Julia , 2023. "Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Samaneh Mansouri & André M. Pessoni & Arturo Marroquín-Rivera & Eric M. Parise & Carol A. Tamminga & Gustavo Turecki & Eric J. Nestler & Ting-Huei Chen & Benoit Labonté, 2023. "Transcriptional dissection of symptomatic profiles across the brain of men and women with depression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.