IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0293966.html
   My bibliography  Save this article

Sensitivity of habitat network models to changes in maximum dispersal distance

Author

Listed:
  • Damian O Ortiz-Rodríguez
  • Antoine Guisan
  • Maarten J Van Strien

Abstract

Predicting the presence or absence (occurrence-state) of species in a certain area is highly important for conservation. Occurrence-state can be assessed by network models that take suitable habitat patches as nodes, connected by potential dispersal of species. To determine connections, a connectivity threshold is set at the species’ maximum dispersal distance. However, this requires field observations prone to underestimation, so for most animal species there are no trustable maximum dispersal distance estimations. This limits the development of accurate network models to predict species occurrence-state. In this study, we performed a sensitivity analysis of the performance of network models to different settings of maximum dispersal distance. Our approach, applied on six amphibian species in Switzerland, used habitat suitability modelling to define habitat patches, which were linked within a dispersal distance threshold to form habitat networks. We used network topological measures, patch suitability, and patch size to explain species occurrence-state in habitat patches through boosted regression trees. These modelling steps were repeated on each species for different maximum dispersal distances, including a species-specific value from literature. We evaluated mainly the predictive performance and predictor importance among the network models. We found that predictive performance had a positive relation with the distance threshold, and that almost none of the species-specific values from literature yielded the best performance across tested thresholds. With increasing dispersal distance, the importance of the habitat-quality-related variable decreased, whereas that of the topology-related predictors increased. We conclude that the sensitivity of these models to the dispersal distance parameter stems from the very different topologies formed with different movement assumptions. Most reported maximum dispersal distances are underestimated, presumably due to leptokurtic dispersal distribution. Our results imply that caution should be taken when selecting a dispersal distance threshold, considering higher values than those derived from field reports, to account for long-distance dispersers.

Suggested Citation

  • Damian O Ortiz-Rodríguez & Antoine Guisan & Maarten J Van Strien, 2023. "Sensitivity of habitat network models to changes in maximum dispersal distance," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0293966
    DOI: 10.1371/journal.pone.0293966
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293966
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293966&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0293966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kimberly R. Hall & Ranjan Anantharaman & Vincent A. Landau & Melissa Clark & Brett G. Dickson & Aaron Jones & Jim Platt & Alan Edelman & Viral B. Shah, 2021. "Circuitscape in Julia: Empowering Dynamic Approaches to Connectivity Assessment," Land, MDPI, vol. 10(3), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nurdan Erdoğan, 2025. "Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    2. Megan K. Jennings & Katherine A. Zeller & Rebecca L. Lewison, 2021. "Dynamic Landscape Connectivity Special Issue Editorial," Land, MDPI, vol. 10(6), pages 1-2, May.
    3. Weerasena, Lakmali & Shier, Douglas & Tonkyn, David & McFeaters, Mark & Collins, Christopher, 2023. "A sequential approach to reserve design with compactness and contiguity considerations," Ecological Modelling, Elsevier, vol. 478(C).
    4. Ekaterina Dolbunova & Alexandre Lucquin & T. Rowan McLaughlin & Manon Bondetti & Blandine Courel & Ester Oras & Henny Piezonka & Harry K. Robson & Helen Talbot & Kamil Adamczak & Konstantin Andreev & , 2023. "The transmission of pottery technology among prehistoric European hunter-gatherers," Nature Human Behaviour, Nature, vol. 7(2), pages 171-183, February.
    5. Erin K. Buchholtz & Michael S. O’Donnell & Julie A. Heinrichs & Cameron L. Aldridge, 2023. "Temporal Patterns of Structural Sagebrush Connectivity from 1985 to 2020," Land, MDPI, vol. 12(6), pages 1-13, June.
    6. Bridgett E. Costanzo & E. Jean Brennan & Elissa M. Olimpi & Justin P. Suraci, 2025. "ANCHOR: An Opportunity to Change Landscape Connectivity Networks and Conservation Delivery At-Scale in the U.S," Land, MDPI, vol. 14(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0293966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.