IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290695.html
   My bibliography  Save this article

Equivalence of information production and generalised entropies in complex processes

Author

Listed:
  • Rudolf Hanel
  • Stefan Thurner

Abstract

Complex systems with strong correlations and fat-tailed distribution functions have been argued to be incompatible with the Boltzmann-Gibbs entropy framework and alternatives, so-called generalised entropies, were proposed and studied. Here we show, that this perceived incompatibility is actually a misconception. For a broad class of processes, Boltzmann entropy –the log multiplicity– remains the valid entropy concept. However, for non-i.i.d. processes, Boltzmann entropy is not of Shannon form, −k∑ipi log pi, but takes the shape of generalised entropies. We derive this result for all processes that can be asymptotically mapped to adjoint representations reversibly where processes are i.i.d. In these representations the information production is given by the Shannon entropy. Over the original sampling space this yields functionals identical to generalised entropies. The problem of constructing adequate context-sensitive entropy functionals therefore can be translated into the much simpler problem of finding adjoint representations. The method provides a comprehensive framework for a statistical physics of strongly correlated systems and complex processes.

Suggested Citation

  • Rudolf Hanel & Stefan Thurner, 2023. "Equivalence of information production and generalised entropies in complex processes," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0290695
    DOI: 10.1371/journal.pone.0290695
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290695
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290695&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Korbel & Simon David Lindner & Rudolf Hanel & Stefan Thurner, 2021. "Thermodynamics of structure-forming systems," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    3. Chavanis, Pierre-Henri, 2006. "Coarse-grained distributions and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 177-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atenas, Boris & Curilef, Sergio, 2021. "A statistical description for the Quasi-Stationary-States of the dipole-type Hamiltonian Mean Field Model based on a family of Vlasov solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    2. Briggs, Keith & Beck, Christian, 2007. "Modelling train delays with q-exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 498-504.
    3. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    4. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    5. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    6. Masi, Marco, 2007. "On the extended Kolmogorov–Nagumo information-entropy theory, the q→1/q duality and its possible implications for a non-extensive two-dimensional Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 67-78.
    7. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    8. Sánchez, Ewin, 2024. "Testing the scope of superstatistical time series analysis: Application to the SYM-H geomagnetic index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    9. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    10. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    11. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    12. Gustavo Z dos Santos Lima & João V T de Lima & João M de Araújo & Gilberto Corso & Sérgio Luiz E F da Silva, 2023. "Generalized statistics: Applications to data inverse problems with outlier-resistance," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-22, March.
    13. Pintarelli, María B. & Vericat, Fernando, 2003. "Generalized Hausdorff inverse moment problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 568-588.
    14. Alves, L.G.A. & Ribeiro, H.V. & Santos, M.A.F. & Mendes, R.S. & Lenzi, E.K., 2015. "Solutions for a q-generalized Schrödinger equation of entangled interacting particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 35-44.
    15. Telesca, Luciano, 2010. "Nonextensive analysis of seismic sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1911-1914.
    16. Suyari, Hiroki & Wada, Tatsuaki, 2008. "Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 71-83.
    17. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    18. Ou, Congjie & Chen, Jincan & Wang, Qiuping A., 2006. "Temperature definition and fundamental thermodynamic relations in incomplete statistics," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 518-521.
    19. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    20. Tsallis, Constantino & Borges, Ernesto P., 2023. "Time evolution of nonadditive entropies: The logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.