Risk assessment for yachting tourism in China using dynamic Bayesian networks
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0289607
Download full text from publisher
References listed on IDEAS
- Meizhi Jiang & Jing Lu, 2020. "Maritime accident risk estimation for sea lanes based on a dynamic Bayesian network," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 649-664, July.
- Christelle Viauroux & Ali Gungor, 2016. "An Empirical Analysis of Life Jacket Effectiveness in Recreational Boating," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 302-319, February.
- Alberto D. Dávila-Lamas & José J. Carbajal-Hernández & Luis P. Sánchez-Fernández & Virginia B. Niebla-Zatarain & César A. Hoil-Rosas, 2022. "Assessment of Coastal Locations Safety Using a Fuzzy Analytical Hierarchy Process-Based Model," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
- Khan, Bushra & Khan, Faisal & Veitch, Brian & Yang, Ming, 2018. "An operational risk analysis tool to analyze marine transportation in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 485-502.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
- Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Julio Ernesto Zaldivar-Herrera & Luis Pastor Sánchez-Fernández & Luis Manuel Rodríguez-Méndez, 2024. "Network Long-Term Evolution Quality of Service Assessment Using a Weighted Fuzzy Inference System," Mathematics, MDPI, vol. 12(24), pages 1-26, December.
- Fan, Hanwen & Jia, Haiying & He, Xuzhuo & Lyu, Jing, 2024. "Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Koçak, Saim Turgut & Yercan, Funda, 2021. "Comparative cost-effectiveness analysis of Arctic and international shipping routes: A Fuzzy Analytic Hierarchy Process," Transport Policy, Elsevier, vol. 114(C), pages 147-164.
- Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
- Hossain, Niamat Ullah Ibne & Jaradat, Raed & Hosseini, Seyedmohsen & Marufuzzaman, Mohammad & Buchanan, Randy K., 2019. "A framework for modeling and assessing system resilience using a Bayesian network: A case study of an interdependent electrical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 62-83.
- Benz, Lukas & Münch, Christopher & Hartmann, Evi, 2021. "Fuzzy-based decision analysis on Arctic transportation: A guidance for freight shipping companies," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 375-400, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
- Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Post-Print hal-03982682, HAL.
- French, Michael & Gumus, Gulcin, 2024. "Hit-and-Run or Hit-and-Stay? Unintended Effects of a Stricter BAC Limit," IZA Discussion Papers 16774, Institute of Labor Economics (IZA).
- Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Fu, Shanshan & Tang, Qinya & Zhang, Mingyang & Han, Bing & Wu, Zhongdai & Mao, Wengang, 2025. "A data-driven framework for risk and resilience analysis in maritime transportation systems: A case study of domino effect accidents in arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Maroua Ghram & Hela Moalla Frikha, 2022. "Multiple Hierarchically Structured Criteria in ARAS Method Under Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global Scientific Publishing, vol. 11(1), pages 1-19, January.
- Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Tao Li & Jiayi Sun & Liguo Fei, 2025. "Dempster-Shafer theory in emergency management: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(6), pages 6413-6440, April.
- Sunay P. Pai & Rajesh S. Prabhu Gaonkar, 2023. "Modelling uncertainty using neutrosophic sets for precise risk assessment of marine systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 946-953, December.
- Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0289607. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.