IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0288024.html
   My bibliography  Save this article

Computational analysis of control of hepatitis B virus disease through vaccination and treatment strategies

Author

Listed:
  • Azhar Iqbal Kashif Butt
  • Muhammad Imran
  • Javeria Aslam
  • Saira Batool
  • Saira Batool

Abstract

Hepatitis B disease is an infection caused by a virus that severely damages the liver. The disease can be both acute and chronic. In this article, we design a new nonlinear SVEICHR model to study dynamics of Hepatitis B Virus (HBV) disease. The aim is to carry out a comprehensive mathematical and computational analysis by exploiting preventive measures of vaccination and hospitalization for disease control. Mathematical properties of proposed model such as boundedness, positivity, and existence and uniqueness of the solutions are proved. We also determine the disease free and endemic equilibrium points. To analyze dynamics of HBV disease, we compute a biologically important quantity known as the reproduction number R0 by using next generation method. We also investigate the stability at both of the equilibrium points. To control the spread of disease due to HBV, two feasible optimal control strategies with three different cases are presented. For this, optimal control problem is constructed and Pontryagin maximum principle is applied with a goal to put down the disease in the population. At the end, we present and discuss effective solutions obtained through a MATLAB code.

Suggested Citation

  • Azhar Iqbal Kashif Butt & Muhammad Imran & Javeria Aslam & Saira Batool & Saira Batool, 2023. "Computational analysis of control of hepatitis B virus disease through vaccination and treatment strategies," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-30, October.
  • Handle: RePEc:plo:pone00:0288024
    DOI: 10.1371/journal.pone.0288024
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288024
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288024&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0288024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baleanu, Dumitru & Shekari, Parisa & Torkzadeh, Leila & Ranjbar, Hassan & Jajarmi, Amin & Nouri, Kazem, 2023. "Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Ali, Ishtiaq & Ullah Khan, Sami, 2020. "Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azhar Iqbal Kashif Butt & Saira Batool & Muhammad Imran & Muneerah Al Nuwairan, 2023. "Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies," Mathematics, MDPI, vol. 11(9), pages 1-29, April.
    2. Safoura Rezaei Aderyani & Reza Saadati & Donal O’Regan & Fehaid Salem Alshammari, 2023. "Fuzzy Approximate Solutions of Matrix-Valued Fractional Differential Equations by Fuzzy Control Functions," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    3. Ishtiaq Ali & Sami Ullah Khan, 2023. "A Dynamic Competition Analysis of Stochastic Fractional Differential Equation Arising in Finance via Pseudospectral Method," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    4. Yan Qiao & Tao Lu, 2024. "Solvability of a Class of Fractional Advection–Dispersion Coupled Systems," Mathematics, MDPI, vol. 12(18), pages 1-18, September.
    5. Hassan, Shahzaib Ahmed & Raja, Muhammad Junaid Ali Asif & Chang, Chuan-Yu & Shu, Chi-Min & Shoaib, Muhammad & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor, 2024. "Nonlinear chaotic Lorenz-Lü-Chen fractional order dynamics: A novel machine learning expedition with deep autoregressive exogenous neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    6. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    7. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Junaid Ali Asif & Shu, Chi-Min, 2025. "Design of fractional innate immune response to nonlinear Parkinson's disease model with therapeutic intervention: Intelligent machine predictive exogenous networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    8. Turkyilmazoglu, Mustafa, 2022. "A restricted epidemic SIR model with elementary solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Gao, Yin & Jia, Lifen, 2021. "Stability in mean for uncertain delay differential equations based on new Lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    10. Barraza, Néstor Ruben & Pena, Gabriel & Moreno, Verónica, 2020. "A non-homogeneous Markov early epidemic growth dynamics model. Application to the SARS-CoV-2 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Ishtiaq Ali & Sami Ullah Khan, 2022. "Asymptotic Behavior of Three Connected Stochastic Delay Neoclassical Growth Systems Using Spectral Technique," Mathematics, MDPI, vol. 10(19), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0288024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.