IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285566.html
   My bibliography  Save this article

Assessment of clustering techniques to support the analyses of soybean seed vigor

Author

Listed:
  • Eduardo R de Oliveira
  • Pedro H Bugatti
  • Priscila T M Saito

Abstract

Soy is the main product of Brazilian agriculture and the fourth most cultivated bean globally. Since soy cultivation tends to increase and due to this large market, the guarantee of product quality is an indispensable factor for enterprises to stay competitive. Industries perform vigor tests to acquire information and evaluate the quality of soy planting. The tetrazolium test, for example, provides information about moisture damage, bedbugs, or mechanical damage. However, the verification of the damage reason and its severity are done by an analyst, one by one. Since this is massive and exhausting work, it is susceptible to mistakes. Proposals involving different supervised learning approaches, including active learning strategies, have already been used, and have brought significant results. Therefore, this paper analyzes the performance of non-supervised techniques for classifying soybeans. An extensive experimental evaluation was performed, considering (9) different clustering algorithms (partitional, hierarchical, and density-based) applied to 5 image datasets of soybean seeds submitted to the tetrazolium test, including different damages and/or their levels. To describe those images, we considered 18 extractors of traditional features. We also considered four metrics (accuracy, FOWLKES, DAVIES, and CALINSKI) and two-dimensionality reduction techniques (principal component analysis and t-distributed stochastic neighbor embedding) for validation. Results show that this paper presents essential contributions since it makes it possible to identify descriptors and clustering algorithms that shall be used as preprocessing in other learning processes, accelerating and improving the classification process of key agricultural problems.

Suggested Citation

  • Eduardo R de Oliveira & Pedro H Bugatti & Priscila T M Saito, 2023. "Assessment of clustering techniques to support the analyses of soybean seed vigor," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-20, August.
  • Handle: RePEc:plo:pone00:0285566
    DOI: 10.1371/journal.pone.0285566
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285566
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285566&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    2. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    3. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    4. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    6. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    7. Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
    8. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    9. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    11. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    12. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    13. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    14. el Bouhaddani, Said & Uh, Hae-Won & Hayward, Caroline & Jongbloed, Geurt & Houwing-Duistermaat, Jeanine, 2018. "Probabilistic partial least squares model: Identifiability, estimation and application," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 331-346.
    15. Nolan, Tui H. & Richardson, Sylvia & Ruffieux, Hélène, 2025. "Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    16. Jianhua Zhao & Changchun Shang & Shulan Li & Ling Xin & Philip L. H. Yu, 2025. "Choosing the number of factors in factor analysis with incomplete data via a novel hierarchical Bayesian information criterion," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 19(1), pages 209-235, March.
    17. Stefan Sommer, 2019. "An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 37-62, February.
    18. Seppo Pulkkinen & Marko Mäkelä & Napsu Karmitsa, 2014. "A generative model and a generalized trust region Newton method for noise reduction," Computational Optimization and Applications, Springer, vol. 57(1), pages 129-165, January.
    19. Gen Li & Sungkyu Jung, 2017. "Incorporating covariates into integrated factor analysis of multi‐view data," Biometrics, The International Biometric Society, vol. 73(4), pages 1433-1442, December.
    20. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.