IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0284298.html
   My bibliography  Save this article

COVID-19 outbreak prediction using Seq2Seq + Attention and Word2Vec keyword time series data

Author

Listed:
  • Yeongha Kim
  • Chang-Reung Park
  • Jae-Pyoung Ahn
  • Beakcheol Jang

Abstract

As of 2022, COVID-19, first reported in Wuhan, China, in November 2019, has become a worldwide epidemic, causing numerous infections and casualties and enormous social and economic damage. To mitigate its impact, various COVID-19 prediction studies have emerged, most of them using mathematical models and artificial intelligence for prediction. However, the problem with these models is that their prediction accuracy is considerably reduced when the duration of the COVID-19 outbreak is short. In this paper, we propose a new prediction method combining Word2Vec and the existing long short-term memory and Seq2Seq + Attention model. We compare the prediction error of the existing and proposed models with the COVID-19 prediction results reported from five US states: California, Texas, Florida, New York, and Illinois. The results of the experiment show that the proposed model combining Word2Vec and the existing long short-term memory and Seq2Seq + Attention achieves better prediction results and lower errors than the existing long short-term memory and Seq2Seq + Attention models. In experiments, the Pearson correlation coefficient increased by 0.05 to 0.21 and the RMSE decreased by 0.03 to 0.08 compared to the existing method.

Suggested Citation

  • Yeongha Kim & Chang-Reung Park & Jae-Pyoung Ahn & Beakcheol Jang, 2023. "COVID-19 outbreak prediction using Seq2Seq + Attention and Word2Vec keyword time series data," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-21, April.
  • Handle: RePEc:plo:pone00:0284298
    DOI: 10.1371/journal.pone.0284298
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284298
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0284298&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0284298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arora, Parul & Kumar, Himanshu & Panigrahi, Bijaya Ketan, 2020. "Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.
    2. Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
    3. Ali, Furqan & Ullah, Farman & Khan, Junaid Iqbal & Khan, Jebran & Sardar, Abdul Wasay & Lee, Sungchang, 2023. "COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Muhammad Usman Tariq & Shuhaida Binti Ismail & Muhammad Babar & Ashir Ahmad, 2023. "Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-17, July.
    5. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    7. Bagarello, F. & Gargano, F. & Roccati, F., 2020. "Modeling epidemics through ladder operators," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Khan, Junaid Iqbal & Ullah, Farman & Lee, Sungchang, 2022. "Attention based parameter estimation and states forecasting of COVID-19 pandemic using modified SIQRD Model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    12. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho & Acharya, Rajendra & Dinh, Toan, 2025. "Electricity demand uncertainty modeling with Temporal Convolution Neural Network models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    13. Mohammad Reza Davahli & Waldemar Karwowski & Krzysztof Fiok, 2021. "Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-14, July.
    14. Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    15. Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
    16. Shastri, Sourabh & Singh, Kuljeet & Kumar, Sachin & Kour, Paramjit & Mansotra, Vibhakar, 2020. "Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    19. Xue, Dong & Wang, Ming & Liu, Fangzhou & Buss, Martin, 2024. "Time series modeling and forecasting of epidemic spreading processes using deep transfer learning," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    20. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0284298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.