IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283874.html
   My bibliography  Save this article

Statistical modeling and evaluation of the impact of multiplicity classification thresholds on the COVID-19 pool testing accuracy

Author

Listed:
  • Omar De La Cruz Cabrera
  • Razan Alsehibani

Abstract

Prior research on pool testing focus on developing testing methods with the main objective of reducing the total number of tests. However, pool testing can also be used to improve the accuracy of the testing process. The objective of this paper is to improve the accuracy of pool testing using the same number of tests as that of individual testing taking into consideration the probability of testing errors and pool multiplicity classification thresholds. Statistical models are developed to evaluate the impact of pool multiplicity classiffcation thresholds on pool testing accuracy using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The findings indicate that under certain conditions, pool testing multiplicity yields superior testing accuracy compared to individual testing without additional cost. The results reveal that selecting the multiplicity classification threshold is a critical factor in improving the pool testing accuracy and show that the lower the prevalence level the higher the gains in accuracy using multiplicity pool testing. The findings also indicate that performance can be improved using a batch size that is inversely proportional to the prevalence level. Furthermore, the results indicate that multiplicity pool testing not only improves the testing accuracy but also reduces the total cost of the testing process. Based on the findings, the manufacturer’s test sensitivity has more significant impact on the accuracy of multiplicity pool testing compared to that of manufacturer’s test specificity.

Suggested Citation

  • Omar De La Cruz Cabrera & Razan Alsehibani, 2023. "Statistical modeling and evaluation of the impact of multiplicity classification thresholds on the COVID-19 pool testing accuracy," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0283874
    DOI: 10.1371/journal.pone.0283874
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283874
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283874&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin-Taek Seong, 2020. "Theoretical Bounds on Performance in Threshold Group Testing Schemes," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    2. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    3. H. M. Finucan, 1964. "The Blood Testing Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 13(1), pages 43-50, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hong & Rounak Dey & Xihong Lin & Brian Cleary & Edgar Dobriban, 2022. "Group testing via hypergraph factorization applied to COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.
    3. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    4. Hae-Young Kim & Michael G. Hudgens, 2009. "Three-Dimensional Array-Based Group Testing Algorithms," Biometrics, The International Biometric Society, vol. 65(3), pages 903-910, September.
    5. Karyn Heavner & Craig Newschaffer & Irva Hertz-Picciotto & Deborah Bennett & Igor Burstyn, 2015. "Pooling Bio-Specimens in the Presence of Measurement Error and Non-Linearity in Dose-Response: Simulation Study in the Context of a Birth Cohort Investigating Risk Factors for Autism Spectrum Disorder," IJERPH, MDPI, vol. 12(11), pages 1-20, November.
    6. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    7. Hrayer Aprahamian & Hadi El-Amine, 2022. "Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 150-164, January.
    8. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    9. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    10. Jin-Taek Seong, 2023. "Bounds on Performance for Recovery of Corrupted Labels in Supervised Learning: A Finite Query-Testing Approach," Mathematics, MDPI, vol. 11(17), pages 1-16, August.
    11. Hussein El Hajj & Douglas R. Bish & Ebru K. Bish & Denise M. Kay, 2022. "Novel Pooling Strategies for Genetic Testing, with Application to Newborn Screening," Management Science, INFORMS, vol. 68(11), pages 7994-8014, November.
    12. Peng Chen & Joshua M. Tebbs & Christopher R. Bilder, 2009. "Group Testing Regression Models with Fixed and Random Effects," Biometrics, The International Biometric Society, vol. 65(4), pages 1270-1278, December.
    13. Haoran Jiang & Hongshik Ahn & Xiaolin Li, 2022. "Group Testing with Consideration of the Dilution Effect," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
    14. Xinlei Zuo & Juan Ding & Junjian Zhang & Wenjun Xiong, 2024. "Nonparametric Additive Regression for High-Dimensional Group Testing Data," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
    15. Shaul K. Bar‐Lev & Arnon Boneh & David Perry, 1990. "Incomplete identification models for group‐testable items," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(5), pages 647-659, October.
    16. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    17. Samuel D. Lendle & Michael G. Hudgens & Bahjat F. Qaqish, 2012. "Group Testing for Case Identification with Correlated Responses," Biometrics, The International Biometric Society, vol. 68(2), pages 532-540, June.
    18. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    19. Yaakov Malinovsky & Paul S. Albert, 2015. "A Note on the Minimax Solution for the Two-Stage Group Testing Problem," The American Statistician, Taylor & Francis Journals, vol. 69(1), pages 45-52, February.
    20. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Informative Dorfman Screening," Biometrics, The International Biometric Society, vol. 68(1), pages 287-296, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.