IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282434.html
   My bibliography  Save this article

Evolutionary game theory and simulations based on doctor and patient medical malpractice

Author

Listed:
  • Lin Song
  • Zhenlei Yu
  • Qiang He

Abstract

Doctors and patients are the two critical players in medical malpractice. The evolutionary game model of doctors and patients is constructed based on information asymmetry and bounded rationality. The strategy selection problem of the two players in the medical malpractice process was studied. With change in different parameters, the evolutionary equilibrium strategy of the model was demonstrated using Vensim simulation. The results show that the weight, penalty amount, benefits of standardized practices, and patient medical alarm cost of strategies of different doctors are the key factors affecting doctor–patient evolutionary game system. Medical malpractice can be reduced by adjusting the weight of different strategy choices, increasing the penalties for illegal practices, and standardizing medical malpractice costs based on doctors’ standardized practice income. Measures to effectively resolve medical malpractice are proposed by introducing a third-party normative system, establishing a doctor–patient information management system, and improving doctors’ reward and punishment mechanisms.

Suggested Citation

  • Lin Song & Zhenlei Yu & Qiang He, 2023. "Evolutionary game theory and simulations based on doctor and patient medical malpractice," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0282434
    DOI: 10.1371/journal.pone.0282434
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282434
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282434&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    2. Zhang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Yan, Ming & Xie, Yunya, 2018. "Tolerance-based punishment and cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 267-272.
    3. Jiang, Luo-Luo & Gao, Jian & Chen, Zhi & Li, Wen-Jing & Kurths, Jürgen, 2021. "Reducing the bystander effect via decreasing group size to solve the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Ren, Tianyu & Zheng, Junjun, 2021. "Evolutionary dynamics in the spatial public goods game with tolerance-based expulsion and cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Li, Wen-Jing & Jiang, Luo-Luo & Perc, Matjaž, 2021. "A limited mobility of minorities facilitates cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Zhang, Lan & Pan, Jianchen & Huang, Changwei, 2023. "Effect of mixed random and directional migration on cooperation in the spatial prisoner’s dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Li, Wen-Jing & Chen, Zhi & Wang, Jun & Jiang, Luo-Luo & Perc, Matjaž, 2023. "Social mobility and network reciprocity shape cooperation in collaborative networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Li, Lan & Yuan, Lin & Jiang, Luo-Luo & Perc, Matjaž & Kurths, Jürgen, 2022. "Eliminating poverty through social mobility promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Zhang, Lan & Huang, Changwei, 2023. "Preferential selection to promote cooperation on degree–degree correlation networks in spatial snowdrift games," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    6. Hu, Qi & Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2024. "Reputation incentives with public supervision promote cooperation in evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    7. Ding, Zhen-Wei & Zhang, Ji-Qiang & Zheng, Guo-Zhong & Cai, Wei-Ran & Cai, Chao-Ran & Chen, Li & Wang, Xu-Ming, 2024. "Emergence of anti-coordinated patterns in snowdrift game by reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    8. Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Qian, Jia-Li & Zhou, Yin-Xiang & Hao, Qing-Yi, 2024. "The emergence of cooperative behavior based on random payoff and heterogeneity of concerning social image," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Yan, Zeyuan & Zhao, Hui & Liang, Shu & Li, Li & Song, Yanjie, 2024. "Inter-layer feedback mechanism with reinforcement learning boosts the evolution of cooperation in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    11. Zhang, Xiaoyang & Chen, Tong & Chen, Qiao & Li, Xueya, 2020. "Will you cooperate in case the payoff can be guaranteed?," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Zhang, Hong, 2023. "Evolution of cooperation with tag-based expulsion in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Bai, Pengzhou & Qiang, Bingzhuang & Zou, Kuan & Huang, Changwei, 2024. "Preferential selection based on adaptive attractiveness induce by reinforcement learning promotes cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Su, Lichen & Yang, Zhengzhi & Zhou, Bowen & Zhang, Naitian & Li, Yumeng, 2023. "Effects of interdependent network reciprocity on the evolution of public cooperation," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    15. Kai-Yin Lin & Jeffrey C Schank, 2022. "Small group size promotes more egalitarian societies as modeled by the hawk-dove game," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-14, December.
    16. Pan, Qiuhui & Wang, Yue & He, Mingfeng, 2022. "Impacts of special cooperation strategy with reward and punishment mechanism on cooperation evolution," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Zhang, Hong, 2025. "Evolution of cooperation among fairness-seeking agents in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 489(C).
    18. Wang, Si-Yi & Liu, Yan-Ping & Zhang, Feng & Wang, Rui-Wu, 2021. "Super-rational aspiration induced strategy updating promotes cooperation in the asymmetric prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    19. Huang, Yongchao & Ren, Tianyu & Zheng, Junjun & Liu, Wenyi & Zhang, Mengshu, 2023. "Evolution of cooperation in public goods games with dynamic resource allocation: A fairness preference perspective," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    20. Zhang, Hong, 2022. "Effects of stubborn players and noise on the evolution of cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.