IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282355.html
   My bibliography  Save this article

Uncertainty analysis and optimization for mild moxibustion

Author

Listed:
  • Honghua Liu
  • Zhiliang Huang
  • Lei Wei
  • He Huang
  • Qian Li
  • Han Peng
  • Mailan Liu

Abstract

During mild moxibustion treatment, uncertainties are involved in the operating parameters, such as the moxa-burning temperature, the moxa stick sizes, the stick-to-skin distance, and the skin moisture content. It results in fluctuations in skin surface temperature during mild moxibustion. Existing mild moxibustion treatments almost ignore the uncertainty of operating parameters. The uncertainties lead to excessive skin surface temperature causing intense pain, or over-low temperature reducing efficacy. Therefore, the interval model was employed to measure the uncertainty of the operation parameters in mild moxibustion, and the uncertainty optimization design was performed for the operation parameters. It aimed to provide the maximum thermal penetration of mild moxibustion to enhance efficacy while meeting the surface temperature requirements. The interval uncertainty optimization can fully consider the operating parameter uncertainties to ensure optimal thermal penetration and avoid patient discomfort caused by excessive skin surface temperature. To reduce the computational burden of the optimization solution, a high-precision surrogate model was established through a radial basis neural network (RBNN), and a nonlinear interval model for mild moxibustion treatment was formulated. By introducing the reliability-based possibility degree of interval (RPDI), the interval uncertainty optimization was transformed into a deterministic optimization problem, solved by the genetic algorithm. The results showed that this method could significantly improve the thermal penetration of mild moxibustion while meeting the skin surface temperature requirements, thereby enhancing efficacy.

Suggested Citation

  • Honghua Liu & Zhiliang Huang & Lei Wei & He Huang & Qian Li & Han Peng & Mailan Liu, 2023. "Uncertainty analysis and optimization for mild moxibustion," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0282355
    DOI: 10.1371/journal.pone.0282355
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282355
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282355&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    2. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    3. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobin Yang & Haitao Lin & Gang Xiao & Huanbin Xue & Xiaopeng Yang, 2019. "Resolution of Max-Product Fuzzy Relation Equation with Interval-Valued Parameter," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    2. Fabiola Roxana Villanueva & Valeriano Antunes Oliveira, 2022. "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 896-923, September.
    3. Mrinal Jana & Geetanjali Panda, 2018. "$$\chi$$ χ -Optimal solution of single objective nonlinear optimization problem with uncertain parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 165-186, March.
    4. P. Kumar & G. Panda, 2017. "Solving nonlinear interval optimization problem using stochastic programming technique," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 752-765, December.
    5. Tong Xin & Guolai Yang & Liqun Wang & Quanzhao Sun, 2020. "Numerical Calculation and Uncertain Optimization of Energy Conversion in Interior Ballistics Stage," Energies, MDPI, vol. 13(21), pages 1-21, November.
    6. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    7. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    8. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    9. Dapeng Wang & Cong Zhang & Wanqing Jia & Qian Liu & Long Cheng & Huaizhi Yang & Yufeng Luo & Na Kuang, 2022. "A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation," Energies, MDPI, vol. 15(20), pages 1-19, October.
    10. A. Bhurjee & G. Panda, 2012. "Efficient solution of interval optimization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(3), pages 273-288, December.
    11. Abhijit Baidya & Uttam Kumar Bera & Manoranjan Maiti, 2016. "The grey linear programming approach and its application to multi-objective multi-stage solid transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 500-522, September.
    12. Hilal Ahmad Bhat & Akhlad Iqbal & Mahwash Aftab, 2025. "Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 205(1), pages 1-29, April.
    13. Debdas Ghosh, 2016. "A Newton method for capturing efficient solutions of interval optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 648-665, September.
    14. Jiang, C. & Zhang, Z.G. & Zhang, Q.F. & Han, X. & Xie, H.C. & Liu, J., 2014. "A new nonlinear interval programming method for uncertain problems with dependent interval variables," European Journal of Operational Research, Elsevier, vol. 238(1), pages 245-253.
    15. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    16. Lifeng Li, 2023. "Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 247-265, June.
    17. Savin Treanţă & Omar Mutab Alsalami, 2024. "On a Weighting Technique for Multiple Cost Optimization Problems with Interval Values," Mathematics, MDPI, vol. 12(15), pages 1-10, July.
    18. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    19. Chakrabortty, Susovan & Pal, Madhumangal & Nayak, Prasun Kumar, 2013. "Intuitionistic fuzzy optimization technique for Pareto optimal solution of manufacturing inventory models with shortages," European Journal of Operational Research, Elsevier, vol. 228(2), pages 381-387.
    20. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.