IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0281131.html
   My bibliography  Save this article

Delivery routing problem of pure electric vehicle with multi-objective pick-up and delivery integration

Author

Listed:
  • Wangang Cai
  • Yihao Zhang
  • Fuyou Huang
  • Chao Ma

Abstract

With the growth of people’s environmental awareness and the encouragement of government policies, the use of electric vehicles in logistics distribution is gradually increasing. In order to solve the dual demand of customers’ simultaneous pick-up and delivery in the “last kilometer logistics”, an electric vehicle routing problem with simultaneous pick-up and delivery and time window (EVRPSPDTW) is considered from the perspective of multi-objective distribution in this paper. Firstly, a decision-making model based on distribution cost and power consumption function is established. In this model, distribution cost includes transportation cost, vehicle use cost, penalty cost of not arriving on time and charging cost. Power consumption function is the energy loss caused by air resistance, tire rolling friction and transmission system. Secondly, a multi-objective genetic algorithm (NSGA-II) optimization solution with fast nondominated ranking and elite strategy is designed, and in view of the shortcomings of traditional NSGA-II, it is proposed to complete population initialization through greedy algorithm and random rules, introduce adaptive cross-mutation strategy in the chromosome crossing and mutation stage, and design three different neighborhood operators in mutation operation based on variant fitness function. Finally, the sensitivity analysis of traffic congestion coefficient further proves the effectiveness of the proposed model and the improved algorithm.

Suggested Citation

  • Wangang Cai & Yihao Zhang & Fuyou Huang & Chao Ma, 2023. "Delivery routing problem of pure electric vehicle with multi-objective pick-up and delivery integration," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-24, February.
  • Handle: RePEc:plo:pone00:0281131
    DOI: 10.1371/journal.pone.0281131
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281131
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0281131&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0281131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gaoyuan Qin & Fengming Tao & Lixia Li, 2019. "A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions," IJERPH, MDPI, vol. 16(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao Lv & Baofeng Sun, 2022. "Multi-Objective Robust Optimization for the Sustainable Location-Inventory-Routing Problem of Auto Parts Supply Logistics," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    2. Ziyu Shan & Jianming Yao, 2024. "Resource Scheduling Optimization of Fresh Food Delivery Porters Considering Ambient Temperature Variations," Sustainability, MDPI, vol. 16(9), pages 1-25, April.
    3. Qiang Fu & Yurou Sun & Lei Wang, 2022. "Risk Assessment of Import Cold Chain Logistics Based on Entropy Weight Matter Element Extension Model: A Case Study of Shanghai, China," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    4. Hailin Wu & Fengming Tao & Qingqing Qiao & Mengjun Zhang, 2020. "A Chance-Constrained Vehicle Routing Problem for Wet Waste Collection and Transportation Considering Carbon Emissions," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    5. Changlu Zhang & Liqian Tang & Jian Zhang & Liming Gou, 2023. "Optimizing Distribution Routes for Chain Supermarket Considering Carbon Emission Cost," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    6. Ismail Abdi Changalima & Prisca Pascrates Rutatola & Goodluck Goldian Ntangeki, 2025. "Trending research topics on carbon footprint and supply chains: a bibliometric analysis based on the Scopus data (2019–2023)," Future Business Journal, Springer, vol. 11(1), pages 1-18, December.
    7. Dini, Niloofar & Yaghoubi, Saeed & Bahrami, Hamideh, 2025. "Logistics Performance Index-driven in operational planning for logistics companies: A smart transportation approach," Transport Policy, Elsevier, vol. 160(C), pages 42-62.
    8. Lei Zhou & Qianpeng Li & Fachao Li & Chenxia Jin, 2022. "Research on Green Technology Path of Cold-Chain Distribution of Fresh Products Based on Sustainable Development Goals," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    9. Bin Xu & Jie Sun & Zhiming Zhang & Rui Gu, 2023. "Research on Cold Chain Logistics Transportation Scheme under Complex Conditional Constraints," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    10. Wenzhu Liao & Lin Liu & Jiazhuo Fu, 2019. "A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    11. Qi Yao & Shenjun Zhu & Yanhui Li, 2022. "Green Vehicle-Routing Problem of Fresh Agricultural Products Considering Carbon Emission," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    12. Hailin Wu & Fengming Tao & Bo Yang, 2020. "Optimization of Vehicle Routing for Waste Collection and Transportation," IJERPH, MDPI, vol. 17(14), pages 1-26, July.
    13. Lin Lu & Song Hu & Yuelin Ren & Kai Kang & Beibei Li, 2022. "Research on Extension Design of Emergency Cold Chain Logistics from the Perspective of Carbon Constraints," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    14. Xu, Song & Ou, Xiangyue & Govindan, Kannan & Chen, Mingzhou & Yang, Wenting, 2025. "An adaptive genetic hyper-heuristic algorithm for a two-echelon vehicle routing problem with dual-customer satisfaction in community group-buying," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    15. Ling Shen & Fengming Tao & Yuhe Shi & Ruiru Qin, 2019. "Optimization of Location-Routing Problem in Emergency Logistics Considering Carbon Emissions," IJERPH, MDPI, vol. 16(16), pages 1-18, August.
    16. Hang Thi Thanh Vu & Jeonghan Ko, 2023. "Inventory Transshipment Considering Greenhouse Gas Emissions for Sustainable Cross-Filling in Cold Supply Chains," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    17. Longlong Leng & Yanwei Zhao & Jingling Zhang & Chunmiao Zhang, 2019. "An Effective Approach for the Multiobjective Regional Low-Carbon Location-Routing Problem," IJERPH, MDPI, vol. 16(11), pages 1-28, June.
    18. Manqiong Sun & Yang Xu & Feng Xiao & Hao Ji & Bing Su & Fei Bu, 2024. "Optimizing Multi-Echelon Delivery Routes for Perishable Goods with Time Constraints," Mathematics, MDPI, vol. 12(23), pages 1-24, December.
    19. Benyamin Moghaddasi & Amir Salar Ghafari Majid & Zahra Mohammadnazari & Amir Aghsami & Masoud Rabbani, 2023. "A green routing-location problem in a cold chain logistics network design within the Balanced Score Card pillars in fuzzy environment," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-33, July.
    20. Lihua Liu & Aneng He & Tian Tian & Lai Soon Lee & Hsin-Vonn Seow, 2024. "Bi-Objective Mixed Integer Nonlinear Programming Model for Low Carbon Location-Inventory-Routing Problem with Time Windows and Customer Satisfaction," Mathematics, MDPI, vol. 12(15), pages 1-35, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0281131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.