IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0280910.html
   My bibliography  Save this article

Inferred networks, machine learning, and health data

Author

Listed:
  • John Matta
  • Virender Singh
  • Trevor Auten
  • Prashant Sanjel

Abstract

This paper presents a network science approach to investigate a health information dataset, the Sexual Acquisition and Transmission of HIV Cooperative Agreement Program (SATHCAP), to uncover hidden relationships that can be used to suggest targeted health interventions. From the data, four key target variables are chosen: HIV status, injecting drug use, homelessness, and insurance status. These target variables are converted to a graph format using four separate graph inference techniques: graphical lasso, Meinshausen Bühlmann (MB), k-Nearest Neighbors (kNN), and correlation thresholding (CT). The graphs are then clustered using four clustering methods: Louvain, Leiden, and NBR-Clust with VAT and integrity. Promising clusters are chosen using internal evaluation measures and are visualized and analyzed to identify marker attributes and key relationships. The kNN and CT inference methods are shown to give useful results when combined with NBR-Clust clustering. Examples of cluster analysis indicate that the methodology produces results that will be relevant to the public health community.

Suggested Citation

  • John Matta & Virender Singh & Trevor Auten & Prashant Sanjel, 2023. "Inferred networks, machine learning, and health data," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0280910
    DOI: 10.1371/journal.pone.0280910
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280910
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0280910&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0280910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiali Wang & Anton H Westveld & A H Welsh & Melissa Parker & Bronwyn Loong, 2021. "Analysis of survey on menstrual disorder among teenagers using Gaussian copula model with graphical lasso prior," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-22, March.
    2. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    2. Jiarui Lu & Pixu Shi & Hongzhe Li, 2019. "Generalized linear models with linear constraints for microbiome compositional data," Biometrics, The International Biometric Society, vol. 75(1), pages 235-244, March.
    3. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Li, Lianwei & Li, Wendy & Zou, Quan & Ma, Zhanshan (Sam), 2020. "Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds," Ecological Modelling, Elsevier, vol. 431(C).
    5. Lishi Deng & Steff Taelman & Matthew R. Olm & Laeticia Celine Toe & Eva Balini & Lionel Olivier Ouédraogo & Yuri Bastos-Moreira & Alemayehu Argaw & Kokeb Tesfamariam & Erica D. Sonnenburg & Giles T. H, 2025. "Maternal balanced energy-protein supplementation reshapes the maternal gut microbiome and enhances carbohydrate metabolism in infants: a randomized controlled trial," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    6. Qin Liu & Qi Su & Fen Zhang & Hein M. Tun & Joyce Wing Yan Mak & Grace Chung-Yan Lui & Susanna So Shan Ng & Jessica Y. L. Ching & Amy Li & Wenqi Lu & Chenyu Liu & Chun Pan Cheung & David S. C. Hui & P, 2022. "Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19 syndrome," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Kim, Kipoong & Park, Jaesung & Jung, Sungkyu, 2024. "Principal component analysis for zero-inflated compositional data," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    8. Xi Peng & Shang Wang & Miaoxiao Wang & Kai Feng & Qing He & Xingsheng Yang & Weiguo Hou & Fangru Li & Yuxiang Zhao & Baolan Hu & Xiao Zou & Ye Deng, 2024. "Metabolic interdependencies in thermophilic communities are revealed using co-occurrence and complementarity networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Pratheepa Jeganathan & Susan P. Holmes, 2021. "A Statistical Perspective on the Challenges in Molecular Microbial Biology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 131-160, June.
    10. Ana Popovic & Celine Bourdon & Pauline W. Wang & David S. Guttman & Sajid Soofi & Zulfiqar A. Bhutta & Robert H. J. Bandsma & John Parkinson & Lisa G. Pell, 2021. "Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    12. Runtan Cheng & Lu Wang & Shenglong Le & Yifan Yang & Can Zhao & Xiangqi Zhang & Xin Yang & Ting Xu & Leiting Xu & Petri Wiklund & Jun Ge & Dajiang Lu & Chenhong Zhang & Luonan Chen & Sulin Cheng, 2022. "A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Yu Shang & Johannes Sikorski & Michael Bonkowski & Anna-Maria Fiore-Donno & Ellen Kandeler & Sven Marhan & Runa S Boeddinghaus & Emily F Solly & Marion Schrumpf & Ingo Schöning & Tesfaye Wubet & Franc, 2017. "Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
    14. Oliver Aasmets & Kertu Liis Krigul & Kreete Lüll & Andres Metspalu & Elin Org, 2022. "Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Emma Schwager & Himel Mallick & Steffen Ventz & Curtis Huttenhower, 2017. "A Bayesian method for detecting pairwise associations in compositional data," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-21, November.
    16. Mia Riddley & Shannon Hepp & FNU Hardeep & Aruj Nayak & Meimei Liu & Xin Xing & Hailong Zhang & Jingqiu Liao, 2025. "Differential roles of deterministic and stochastic processes in structuring soil bacterial ecotypes across terrestrial ecosystems," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Koplin, Eric & Forzani, Liliana & Tomassi, Diego & Pfeiffer, Ruth M., 2024. "Sufficient dimension reduction for a novel class of zero-inflated graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    18. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Lingjing Jiang & Niina Haiminen & Anna‐Paola Carrieri & Shi Huang & Yoshiki Vázquez‐Baeza & Laxmi Parida & Ho‐Cheol Kim & Austin D. Swafford & Rob Knight & Loki Natarajan, 2022. "Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data," Biometrics, The International Biometric Society, vol. 78(3), pages 1155-1167, September.
    20. Ines Wilms & Jacob Bien, 2021. "Tree-based Node Aggregation in Sparse Graphical Models," Papers 2101.12503, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0280910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.