IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0279641.html
   My bibliography  Save this article

Exploring the potential of OMOP common data model for process mining in healthcare

Author

Listed:
  • Kangah Park
  • Minsu Cho
  • Minseok Song
  • Sooyoung Yoo
  • Hyunyoung Baek
  • Seok Kim
  • Kidong Kim

Abstract

Background and objective: Recently, Electronic Health Records (EHR) are increasingly being converted to Common Data Models (CDMs), a database schema designed to provide standardized vocabularies to facilitate collaborative observational research. To date, however, rare attempts exist to leverage CDM data for healthcare process mining, a technique to derive process-related knowledge (e.g., process model) from event logs. This paper presents a method to extract, construct, and analyze event logs from the Observational Medical Outcomes Partnership (OMOP) CDM for process mining and demonstrates CDM-based healthcare process mining with several real-life study cases while answering frequently posed questions in process mining, in the CDM environment. Methods: We propose a method to extract, construct, and analyze event logs from the OMOP CDM for process types including inpatient, outpatient, emergency room processes, and patient journey. Using the proposed method, we extract the retrospective data of several surgical procedure cases (i.e., Total Laparoscopic Hysterectomy (TLH), Total Hip Replacement (THR), Coronary Bypass (CB), Transcatheter Aortic Valve Implantation (TAVI), Pancreaticoduodenectomy (PD)) from the CDM of a Korean tertiary hospital. Patient data are extracted for each of the operations and analyzed using several process mining techniques. Results: Using process mining, the clinical pathways, outpatient process models, emergency room process models, and patient journeys are demonstrated using the extracted logs. The result shows CDM’s usability as a novel and valuable data source for healthcare process analysis, yet with a few considerations. We found that CDM should be complemented by different internal and external data sources to address the administrative and operational aspects of healthcare processes, particularly for outpatient and ER process analyses. Conclusion: To the best of our knowledge, we are the first to exploit CDM for healthcare process mining. Specifically, we provide a step-by-step guidance by demonstrating process analysis from locating relevant CDM tables to visualizing results using process mining tools. The proposed method can be widely applicable across different institutions. This work can contribute to bringing a process mining perspective to the existing CDM users in the changing Hospital Information Systems (HIS) environment and also to facilitating CDM-based studies in the process mining research community.

Suggested Citation

  • Kangah Park & Minsu Cho & Minseok Song & Sooyoung Yoo & Hyunyoung Baek & Seok Kim & Kidong Kim, 2023. "Exploring the potential of OMOP common data model for process mining in healthcare," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-24, January.
  • Handle: RePEc:plo:pone00:0279641
    DOI: 10.1371/journal.pone.0279641
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279641
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0279641&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0279641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyunyoung Baek & Minsu Cho & Seok Kim & Hee Hwang & Minseok Song & Sooyoung Yoo, 2018. "Analysis of length of hospital stay using electronic health records: A statistical and data mining approach," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lia Gentil & Guy Grenier & Helen-Maria Vasiliadis & Marie-Josée Fleury, 2022. "Predictors of Length of Hospitalization and Impact on Early Readmission for Mental Disorders," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    2. Kuluski, Kerry & Cadel, Lauren & Marcinow, Michelle & Sandercock, Jane & Guilcher, Sara JT, 2022. "Expanding our understanding of factors impacting delayed hospital discharge: Insights from patients, caregivers, providers and organizational leaders in Ontario, Canada," Health Policy, Elsevier, vol. 126(4), pages 310-317.
    3. Addisu Jember Zeleke & Serena Moscato & Rossella Miglio & Lorenzo Chiari, 2022. "Length of Stay Analysis of COVID-19 Hospitalizations Using a Count Regression Model and Quantile Regression: A Study in Bologna, Italy," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    4. Emmanuel Helm & Anna M. Lin & David Baumgartner & Alvin C. Lin & Josef Küng, 2020. "Towards the Use of Standardized Terms in Clinical Case Studies for Process Mining in Healthcare," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    5. Trinchese, D. & Vainieri, M. & Cantarelli, P., 2024. "Gender diversity and healthcare performance: A quantitative analysis from the Italian health system," Health Policy, Elsevier, vol. 146(C).
    6. Anthony Gramaje & Fadi Thabtah & Neda Abdelhamid & Sayan Kumar Ray, 2021. "Patient Discharge Classification Using Machine Learning Techniques," Annals of Data Science, Springer, vol. 8(4), pages 755-767, December.
    7. Davide Golinelli & Francesco Sanmarchi & Fabrizio Toscano & Andrea Bucci & Nicola Nante, 2024. "Analyzing the 20-year declining trend of hospital length-of-stay in European countries with different healthcare systems and reimbursement models," International Journal of Health Economics and Management, Springer, vol. 24(3), pages 375-392, September.
    8. Braulio A Marfil-Garza & Pablo F Belaunzarán-Zamudio & Alfonso Gulias-Herrero & Antonio Camiro Zuñiga & Yanink Caro-Vega & David Kershenobich-Stalnikowitz & José Sifuentes-Osornio, 2018. "Risk factors associated with prolonged hospital length-of-stay: 18-year retrospective study of hospitalizations in a tertiary healthcare center in Mexico," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    9. Reyes-Santias, Francisco & Reboredo, Juan C. & de Assis, Edilson Machado & Rivera-Castro, Miguel A., 2021. "Does length of hospital stay reflect power-law behavior? A q-Weibull density approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    10. Rita Matos & Diogo Ferreira & Maria Isabel Pedro, 2021. "Economic Analysis of Portuguese Public Hospitals Through the Construction of Quality, Efficiency, Access, and Financial Related Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 157(1), pages 361-392, August.
    11. Minsu Cho & Minseok Song & Junhyun Park & Seok-Ran Yeom & Il-Jae Wang & Byung-Kwan Choi, 2020. "Process Mining-Supported Emergency Room Process Performance Indicators," IJERPH, MDPI, vol. 17(17), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.