IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278515.html
   My bibliography  Save this article

Bayesian space-time SIR modeling of Covid-19 in two US states during the 2020–2021 pandemic

Author

Listed:
  • Andrew B Lawson
  • Joanne Kim

Abstract

This paper describes the Bayesian SIR modeling of the 3 waves of Covid-19 in two contrasting US states during 2020–2021. A variety of models are evaluated at the county level for goodness-of-fit and an assessment of confounding predictors is also made. It is found that models with three deprivation predictors and neighborhood effects are important. In addition, the work index from Google mobility was also found to provide an increased explanation of the transmission dynamics.

Suggested Citation

  • Andrew B Lawson & Joanne Kim, 2022. "Bayesian space-time SIR modeling of Covid-19 in two US states during the 2020–2021 pandemic," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0278515
    DOI: 10.1371/journal.pone.0278515
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278515
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278515&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Morton & Bärbel F. Finkenstädt, 2005. "Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 575-594, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2008. "Model‐based measurement of latent risk in time series with applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 265-277, January.
    2. Sifat Sharmin & Md. Israt Rayhan, 2012. "Spatio-temporal modeling of infectious disease dynamics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 875-882, September.
    3. Andrew B Lawson & Joanne Kim, 2021. "Space-time covid-19 Bayesian SIR modeling in South Carolina," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    4. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.