IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0277804.html
   My bibliography  Save this article

Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights

Author

Listed:
  • Sumantra Chatterjee
  • Alper Adak
  • Scott Wilde
  • Shakirah Nakasagga
  • Seth C Murray

Abstract

Unoccupied aerial systems (UAS) based high throughput phenotyping studies require further investigation to combine different environments and planting times into one model. Here 100 elite breeding hybrids of maize (Zea mays L.) were evaluated in two environment trials–one with optimal planting and irrigation (IHOT), and one dryland with delayed planting (DHOT). RGB (Red-Green-Blue) based canopy height measurement (CHM) and vegetation indices (VIs) were estimated from a UAS platform. Time series and cumulative VIs, by both summation (ΣVI-SUMs) and area under the curve (ΣVI-AUCs), were fit via machine learning regression modeling (random forest, linear, ridge, lasso, elastic net regressions) to estimate grain yield. VIs were more valuable predictors of yield to combine different environments than CHM. Time series VIs and CHM produced high accuracies (~68–72%), but inconsistent models. A little sacrifice in accuracy (~60–65%) produced consistent models using ΣVI-SUMs and CHM during pre-reproductive vegetative growth. Absence of VIs produced poorer accuracies (by about ~5–10%). Normalized difference type VIs produced maximum accuracies, and flowering times were the best times for UAS data acquisition. This study suggests that the best yielding varieties can be accurately predicted in new environments at or before flowering when combining multiple temporal flights and predictors.

Suggested Citation

  • Sumantra Chatterjee & Alper Adak & Scott Wilde & Shakirah Nakasagga & Seth C Murray, 2023. "Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-23, January.
  • Handle: RePEc:plo:pone00:0277804
    DOI: 10.1371/journal.pone.0277804
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277804
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277804&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0277804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longfei Zhou & Xiaohe Gu & Shu Cheng & Guijun Yang & Meiyan Shu & Qian Sun, 2020. "Analysis of Plant Height Changes of Lodged Maize Using UAV-LiDAR Data," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanming Li & Yibo Guo & Liang Gong & Chengliang Liu, 2023. "Harvesting Route Detection and Crop Height Estimation Methods for Lodged Farmland Based on AdaBoost," Agriculture, MDPI, vol. 13(9), pages 1-18, August.
    2. Jingqian Wen & Yanxin Yin & Yawei Zhang & Zhenglin Pan & Yindong Fan, 2022. "Detection of Wheat Lodging by Binocular Cameras during Harvesting Operation," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    3. Barbara Dobosz & Dariusz Gozdowski & Jerzy Koronczok & Jan Žukovskis & Elżbieta Wójcik-Gront, 2023. "Evaluation of Maize Crop Damage Using UAV-Based RGB and Multispectral Imagery," Agriculture, MDPI, vol. 13(8), pages 1-14, August.
    4. Yawei Wang & Yifei Chen & Xiangnan Zhang & Wenwen Gong, 2021. "Research on Measurement Method of Leaf Length and Width Based on Point Cloud," Agriculture, MDPI, vol. 11(1), pages 1-13, January.
    5. Dong, Hao & Dong, Jiahui & Sun, Shikun & Bai, Ting & Zhao, Dongmei & Yin, Yali & Shen, Xin & Wang, Yakun & Zhang, Zhitao & Wang, Yubao, 2024. "Crop water stress detection based on UAV remote sensing systems," Agricultural Water Management, Elsevier, vol. 303(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.