IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0274253.html
   My bibliography  Save this article

Predictive analysis of multiple future scientific impacts by embedding a heterogeneous network

Author

Listed:
  • Masanao Ochi
  • Masanori Shiro
  • Jun’ichiro Mori
  • Ichiro Sakata

Abstract

Identifying promising research as early as possible is vital to determine which research deserves investment. Additionally, developing a technology for automatically predicting future research trends is necessary because of increasing digital publications and research fragmentation. In previous studies, many researchers have performed the prediction of scientific indices using specially designed features for each index. However, this does not capture real research trends. It is necessary to develop a more integrated method to capture actual research trends from various directions. Recent deep learning technology integrates different individual models and makes it easier to construct more general-purpose models. The purpose of this paper is to show the possibility of integrating multiple prediction models for scientific indices by network-based representation learning. This paper will conduct predictive analysis of multiple future scientific impacts by embedding a heterogeneous network and showing that a network embedding method is a promising tool for capturing and expressing scientific trends. Experimental results show that the multiple heterogeneous network embedding improved 1.6 points than a single citation network embedding. Experimental results show better results than baseline for the number of indices, including the author h-index, the journal impact factor (JIF), and the Nature Index after three years from publication. These results suggest that distributed representations of a heterogeneous network for scientific papers are the basis for the automatic prediction of scientific trends.

Suggested Citation

  • Masanao Ochi & Masanori Shiro & Jun’ichiro Mori & Ichiro Sakata, 2022. "Predictive analysis of multiple future scientific impacts by embedding a heterogeneous network," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-22, September.
  • Handle: RePEc:plo:pone00:0274253
    DOI: 10.1371/journal.pone.0274253
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274253
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274253&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0274253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Wei & Ren, Yan & Huang, Yong & Bu, Yi & Zhang, Yuehan, 2021. "Scientific collaboration and career stages: An ego-centric perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    3. Ainun Hasanah & Jing Wu, 2025. "Bibliometric analysis and global research trends of climate change and cities studies for 30 years (1990–2021)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 5573-5617, March.
    4. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    5. Wan Siti Nur Aiza & Liyana Shuib & Norisma Idris & Nur Baiti Afini Normadhi, 2024. "Features, techniques and evaluation in predicting articles’ citations: a review from years 2010–2023," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(1), pages 1-29, January.
    6. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    7. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    8. Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
    9. Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
    10. Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
    11. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
    12. Xiaomei Bai & Fuli Zhang & Jinzhou Li & Zhong Xu & Zeeshan Patoli & Ivan Lee, 2021. "Quantifying scientific collaboration impact by exploiting collaboration-citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7993-8008, September.
    13. Saarela, Mirka & Kärkkäinen, Tommi, 2020. "Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator," Journal of Informetrics, Elsevier, vol. 14(2).
    14. Zhengang Zhang & Chuanming Yu & Jingnan Wang & Lu An, 2025. "A temporal evolution and fine-grained information aggregation model for citation count prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(4), pages 2069-2091, April.
    15. Jiang, Zhuoren & Lin, Tianqianjin & Huang, Cui, 2023. "Deep representation learning of scientific paper reveals its potential scholarly impact," Journal of Informetrics, Elsevier, vol. 17(1).
    16. Chompunuch Saravudecha & Duangruthai Na Thungfai & Chananthida Phasom & Sodsri Gunta-in & Aorrakanya Metha & Peangkobfah Punyaphet & Tippawan Sookruay & Wannachai Sakuludomkan & Nut Koonrungsesomboon, 2023. "Hybrid Gold Open Access Citation Advantage in Clinical Medicine: Analysis of Hybrid Journals in the Web of Science," Publications, MDPI, vol. 11(2), pages 1-9, March.
    17. Tehmina Amjad & Nafeesa Shahid & Ali Daud & Asma Khatoon, 2022. "Citation burst prediction in a bibliometric network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2773-2790, May.
    18. Wang, Xing & Zhang, Zhihui, 2020. "Improving the reliability of short-term citation impact indicators by taking into account the correlation between short- and long-term citation impact," Journal of Informetrics, Elsevier, vol. 14(2).
    19. Kehan Wang & Wenxuan Shi & Junsong Bai & Xiaoping Zhao & Liying Zhang, 2021. "Prediction and application of article potential citations based on nonlinear citation-forecasting combined model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6533-6550, August.
    20. Chowdhury, K.P., 2021. "Functional analysis of generalized linear models under non-linear constraints with applications to identifying highly-cited papers," Journal of Informetrics, Elsevier, vol. 15(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.