IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0274253.html
   My bibliography  Save this article

Predictive analysis of multiple future scientific impacts by embedding a heterogeneous network

Author

Listed:
  • Masanao Ochi
  • Masanori Shiro
  • Jun’ichiro Mori
  • Ichiro Sakata

Abstract

Identifying promising research as early as possible is vital to determine which research deserves investment. Additionally, developing a technology for automatically predicting future research trends is necessary because of increasing digital publications and research fragmentation. In previous studies, many researchers have performed the prediction of scientific indices using specially designed features for each index. However, this does not capture real research trends. It is necessary to develop a more integrated method to capture actual research trends from various directions. Recent deep learning technology integrates different individual models and makes it easier to construct more general-purpose models. The purpose of this paper is to show the possibility of integrating multiple prediction models for scientific indices by network-based representation learning. This paper will conduct predictive analysis of multiple future scientific impacts by embedding a heterogeneous network and showing that a network embedding method is a promising tool for capturing and expressing scientific trends. Experimental results show that the multiple heterogeneous network embedding improved 1.6 points than a single citation network embedding. Experimental results show better results than baseline for the number of indices, including the author h-index, the journal impact factor (JIF), and the Nature Index after three years from publication. These results suggest that distributed representations of a heterogeneous network for scientific papers are the basis for the automatic prediction of scientific trends.

Suggested Citation

  • Masanao Ochi & Masanori Shiro & Jun’ichiro Mori & Ichiro Sakata, 2022. "Predictive analysis of multiple future scientific impacts by embedding a heterogeneous network," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-22, September.
  • Handle: RePEc:plo:pone00:0274253
    DOI: 10.1371/journal.pone.0274253
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274253
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274253&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0274253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Wei & Ren, Yan & Huang, Yong & Bu, Yi & Zhang, Yuehan, 2021. "Scientific collaboration and career stages: An ego-centric perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    3. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Ainun Hasanah & Jing Wu, 2025. "Bibliometric analysis and global research trends of climate change and cities studies for 30 years (1990–2021)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 5573-5617, March.
    5. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    6. Ante, Lennart, 2024. "The scope of green finance research: Research streams, influential works and future research paths," Ecological Economics, Elsevier, vol. 224(C).
    7. Carlo Galli & Stefano Guizzardi, 2021. "The Effect of Article Characteristics on Citation Number in a Diachronic Dataset of the Biomedical Literature on Chronic Inflammation: An Analysis by Ensemble Machines," Publications, MDPI, vol. 9(2), pages 1-11, April.
    8. Sato, Ryoma & Yamada, Makoto & Kashima, Hisashi, 2022. "Poincare: Recommending Publication Venues via Treatment Effect Estimation," Journal of Informetrics, Elsevier, vol. 16(2).
    9. Wan Siti Nur Aiza & Liyana Shuib & Norisma Idris & Nur Baiti Afini Normadhi, 2024. "Features, techniques and evaluation in predicting articles’ citations: a review from years 2010–2023," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(1), pages 1-29, January.
    10. Fang Zhang & Shengli Wu, 2024. "Predicting citation impact of academic papers across research areas using multiple models and early citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4137-4166, July.
    11. Shaibu Mohammed & Anthony Morgan & Emmanuel Nyantakyi, 2020. "On the influence of uncited publications on a researcher’s h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1791-1799, March.
    12. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    13. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    14. Hu, Ya-Han & Tai, Chun-Tien & Liu, Kang Ernest & Cai, Cheng-Fang, 2020. "Identification of highly-cited papers using topic-model-based and bibliometric features: the consideration of keyword popularity," Journal of Informetrics, Elsevier, vol. 14(1).
    15. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    16. Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
    17. Delbianco, Fernando & Fioriti, Andrés & Hernandez-Chanto, Allan & Tohmé, Fernando, 2020. "A Markov-switching approach to the study of citations in academic journals," Journal of Informetrics, Elsevier, vol. 14(4).
    18. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
    19. Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
    20. Chanwoo Jeong & Sion Jang & Eunjeong Park & Sungchul Choi, 2020. "A context-aware citation recommendation model with BERT and graph convolutional networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1907-1922, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.