IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0270082.html
   My bibliography  Save this article

Assessing small-mammal trapping design using spatially explicit capture recapture (SECR) modeling on long-term monitoring data

Author

Listed:
  • Chase M Freeman
  • Laureen Barthman-Thompson
  • Robert Klinger
  • Isa Woo
  • Karen M Thorne

Abstract

Few studies have evaluated the optimal sampling design for tracking small mammal population trends, especially for rare or difficult to detect species. Spatially explicit capture-recapture (SECR) models present an advancement over non-spatial models by accounting for individual movement when estimating density. The salt marsh harvest mouse (SMHM; Reithrodontomys raviventris) is a federal and California state listed endangered species endemic to the San Francisco Bay-Delta estuary, California, USA; where a population in a subembayment has been continually monitored over an 18-year period using mark-recapture methods. We analyzed capture data within a SECR modeling framework that allowed us to account for differences in detection and movement between sexes. We compared the full dataset to subsampling scenarios to evaluate how the grid size (area) of the trap design, trap density (spacing), and number of consecutive trapping occasions (duration) influenced density estimates. To validate the subsampling methods, we ran Monte Carlo simulations based on the true parameter estimates for each specific year. We found that reducing the area of the trapping design by more than 36% resulted in the inability of the SECR model to replicate density estimates within the SE of the original density estimates. However, when trapping occasions were reduced from 4 to 3-nights the density estimates were indistinguishable from the full dataset. Furthermore, reducing trap density by 50% also resulted in density estimates comparable to the full dataset and was a substantially better model than reducing the trap area by 50%. Overall, our results indicated that moderate reductions in the number of trapping occasions or trap density could yield similar density estimates when using a SECR approach. This approach allows the optimization of field trapping efforts and designs by reducing field efforts while maintaining the same population estimate compared to the full dataset. Using a SECR approach may help other wildlife programs identify sampling efficiencies without sacrificing data integrity for long term monitoring of population densities.

Suggested Citation

  • Chase M Freeman & Laureen Barthman-Thompson & Robert Klinger & Isa Woo & Karen M Thorne, 2022. "Assessing small-mammal trapping design using spatially explicit capture recapture (SECR) modeling on long-term monitoring data," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-20, July.
  • Handle: RePEc:plo:pone00:0270082
    DOI: 10.1371/journal.pone.0270082
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270082
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0270082&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0270082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. T. Buckland & I. B. J. Goudie & D. L. Borchers, 2000. "Wildlife Population Assessment: Past Developments and Future Directions," Biometrics, The International Biometric Society, vol. 56(1), pages 1-12, March.
    2. repec:plo:pone00:0088025 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    2. Devin S. Johnson & Jennifer A. Hoeting, 2003. "Autoregressive Models for Capture-Recapture Data: A Bayesian Approach," Biometrics, The International Biometric Society, vol. 59(2), pages 341-350, June.
    3. I. B. J. Goudie & M. Goudie, 2007. "Who captures the marks for the Petersen estimator?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(3), pages 825-839, July.
    4. Chauvenet, Alienor L.M. & Gill, Robin M.A. & Smith, Graham C. & Ward, Alastair I. & Massei, Giovanna, 2017. "Quantifying the bias in density estimated from distance sampling and camera trapping of unmarked individuals," Ecological Modelling, Elsevier, vol. 350(C), pages 79-86.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.