IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0268173.html
   My bibliography  Save this article

Research on supporting mechanism of ancillary service of PV system to grid energy efficiency based on multi-time and space-time operation

Author

Listed:
  • Cui Yong
  • Mingzhen Shao
  • Zhou Xiaoqian
  • Liu Wen
  • Ji Desen
  • Thomas Stephen Ramsey

Abstract

Under the background of high-energy penetration of new energy into the power grid, this paper takes the ancillary service capability of photovoltaic energy integrated into the grid as the starting point and builds a photovoltaic system reactive power service impact evaluation model on the grid energy efficiency. This is based on the multi-temporal and spatial scale operation mode, in order to study the supporting principles of photovoltaic system reactive power services on the energy efficiency of grid operation and the law of influence on system energy efficiency changes. In this way, the space for power system energy efficiency improvement and the reactive power service market value of renewable energy are explored to improve the renewable energy auxiliary services participation in the theoretical system of electric power spot market transactions. The research conclusions can provide a decision-making reference for system dynamic energy efficiency management and can assist relevant market entities to make optimal decisions in spot market transactions, and provide empirical data for improving the theory of renewable energy participation in auxiliary service market transactions.

Suggested Citation

  • Cui Yong & Mingzhen Shao & Zhou Xiaoqian & Liu Wen & Ji Desen & Thomas Stephen Ramsey, 2022. "Research on supporting mechanism of ancillary service of PV system to grid energy efficiency based on multi-time and space-time operation," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0268173
    DOI: 10.1371/journal.pone.0268173
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268173
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0268173&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0268173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Vinit & Singh, Mukesh, 2021. "Reactive power compensation using derated power generation mode of modified P&O algorithm in grid-interfaced PV system," Renewable Energy, Elsevier, vol. 178(C), pages 108-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Fang & Hu, Rongzhao & Yin, Linfei, 2023. "Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems," Energy, Elsevier, vol. 264(C).
    2. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    3. Refaat, Ahmed & Ali, Qays Adnan & Elsakka, Mohamed Mohamed & Elhenawy, Yasser & Majozi, Thokozani & Korovkin, Nikolay V. & Elfar, Medhat Hegazy, 2024. "Extraction of maximum power from PV system based on horse herd optimization MPPT technique under various weather conditions," Renewable Energy, Elsevier, vol. 220(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0268173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.