IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267607.html
   My bibliography  Save this article

High-resolution weather network reveals a high spatial variability in air temperature in the Central valley of California with implications for crop and pest management

Author

Listed:
  • Johann Martínez-Lüscher
  • Tomas Teitelbaum
  • Anthony Mele
  • Oliver Ma
  • Andrew Jordan Frewin
  • Jordan Hazell

Abstract

Weather is the most important driver of crop development. However, spatial variability in weather makes it hard to obtain reliable high resolution datasets across large areas. Most growers rely on data from a single station that can be up to 50km away to make decisions about irrigation, pest management and penology-associated cultural practices at the block level. In this regard, we hypothesize that kriging a large network of weather stations can improve thermal time data quality compared to using the closest station. This study aims to explore the spatial variability in California’s Central Valley and what is the relationship between the density of weather stations used and the error in the measurement of temperature related metrics and derived models. For this purpose, we used temperature records from January 1st 2020 to March 1st 2021 collected by the California Irrigation Management Information System (CIMIS) and a system of 731 weather stations placed above the canopy of trees in commercial orchards (in-orchard). We observed large discrepancies (>300 GDDTb0) in thermal time accumulation between using an interpolation of all stations available and just using the closest CIMIS station. Our data suggests these differences are not systematic bias but true differences in mesoclimate. Similar results were observed for chill accumulation in areas especially prone to not meeting pistachio chill requirements where the discrepancies between using the site-specific in-orchard weather station network and not using them were up to 10 CP. The use of this high resolution network of weather stations revealed spatial patterns in grape, almond, pistachio and pests phenology not reported before. Whereas previous studies have been focused on predictions at the county or state or regional level, our data suggests that a finer resolution can result in major improvements in the quality of data crucial for crop decision making.

Suggested Citation

  • Johann Martínez-Lüscher & Tomas Teitelbaum & Anthony Mele & Oliver Ma & Andrew Jordan Frewin & Jordan Hazell, 2022. "High-resolution weather network reveals a high spatial variability in air temperature in the Central valley of California with implications for crop and pest management," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0267607
    DOI: 10.1371/journal.pone.0267607
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267607
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267607&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lauren E. Parker & John T. Abatzoglou, 2018. "Shifts in the thermal niche of almond under climate change," Climatic Change, Springer, vol. 147(1), pages 211-224, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamzeh Ahmadi & Gholamabbas Fallah Ghalhari & Mohammad Baaghideh, 2019. "Impacts of climate change on apple tree cultivation areas in Iran," Climatic Change, Springer, vol. 153(1), pages 91-103, March.
    2. repec:plo:pone00:0232537 is not listed on IDEAS
    3. Gardner, A.S. & Gaston, K.J. & Maclean, I.M.D., 2021. "Combining qualitative and quantitative methodology to assess prospects for novel crops in a warming climate," Agricultural Systems, Elsevier, vol. 190(C).
    4. Alexander Maas & Chloe Wardropper & Gabrielle Roesch-McNally & John Abatzoglou, 2020. "A (mis)alignment of farmer experience and perceptions of climate change in the U.S. inland Pacific Northwest," Climatic Change, Springer, vol. 162(3), pages 1011-1029, October.
    5. repec:ags:aaea22:335474 is not listed on IDEAS
    6. Gardner, A.S. & Maclean, I.M.D. & Gaston, K.J. & Bütikofer, L., 2021. "Forecasting future crop suitability with microclimate data," Agricultural Systems, Elsevier, vol. 190(C).
    7. Gabriel Granco & Haoji He & Brandon Lentz & Jully Voong & Alan Reeve & Exal Vega, 2023. "Mid- and End-of-the-Century Estimation of Agricultural Suitability of California’s Specialty Crops," Land, MDPI, vol. 12(10), pages 1-18, October.
    8. Heinz, Malve & Galetti, Valeria & Holzkämper, Annelie, 2024. "How to find alternative crops for climate-resilient regional food production," Agricultural Systems, Elsevier, vol. 213(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.