IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267510.html
   My bibliography  Save this article

Supervised learning using routine surveillance data improves outbreak detection of Salmonella and Campylobacter infections in Germany

Author

Listed:
  • Benedikt Zacher
  • Irina Czogiel

Abstract

The early detection of infectious disease outbreaks is a crucial task to protect population health. To this end, public health surveillance systems have been established to systematically collect and analyse infectious disease data. A variety of statistical tools are available, which detect potential outbreaks as abberations from an expected endemic level using these data. Here, we present supervised hidden Markov models for disease outbreak detection, which use reported outbreaks that are routinely collected in the German infectious disease surveillance system and have not been leveraged so far. This allows to directly integrate labeled outbreak data in a statistical time series model for outbreak detection. We evaluate our model using real Salmonella and Campylobacter data, as well as simulations. The proposed supervised learning approach performs substantially better than unsupervised learning and on par with or better than a state-of-the-art approach, which is applied in multiple European countries including Germany.

Suggested Citation

  • Benedikt Zacher & Irina Czogiel, 2022. "Supervised learning using routine surveillance data improves outbreak detection of Salmonella and Campylobacter infections in Germany," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0267510
    DOI: 10.1371/journal.pone.0267510
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267510
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267510&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Höhle, 2007. "$${\tt surveillance}$$ : An R package for the monitoring of infectious diseases," Computational Statistics, Springer, vol. 22(4), pages 571-582, December.
    2. C. P. Farrington & N. J. Andrews & A. D. Beale & M. A. Catchpole, 1996. "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 547-563, May.
    3. Steffen Unkel & C. Paddy Farrington & Paul H. Garthwaite & Chris Robertson & Nick Andrews, 2012. "Statistical methods for the prospective detection of infectious disease outbreaks: a review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 49-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:plo:pone00:0227955 is not listed on IDEAS
    2. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    3. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
    4. Zhang, Ping & Wang, Jianwen & Atkinson, Peter M., 2019. "Identifying the spatio-temporal risk variability of avian influenza A H7N9 in China," Ecological Modelling, Elsevier, vol. 414(C).
    5. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    6. Chengcheng Bei & Shiping Liu & Yin Liao & Gaoliang Tian & Zichen Tian, 2021. "Predicting new cases of COVID‐19 and the application to population sustainability analysis," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4859-4884, September.
    7. Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
    8. Santitissadeekorn, Naratip & Lloyd, David J.B. & Short, Martin B. & Delahaies, Sylvain, 2020. "Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Yeong-Jun Song & Hae-Kwan Cheong & Myung Ki & Ji-Yeon Shin & Seung-sik Hwang & Mira Park & Moran Ki & Jiseun Lim, 2018. "The Epidemiological Influence of Climatic Factors on Shigellosis Incidence Rates in Korea," IJERPH, MDPI, vol. 15(10), pages 1-9, October.
    10. repec:plo:pone00:0141776 is not listed on IDEAS
    11. repec:plo:pone00:0073726 is not listed on IDEAS
    12. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
    13. Veli B. Shakhmurov & Muhammet Kurulay & Aida Sahmurova & Mustafa Can Gursesli & Antonio Lanata, 2023. "A Novel Nonlinear Dynamic Model Describing the Spread of Virus," Mathematics, MDPI, vol. 11(20), pages 1-15, October.
    14. Janine Aron & John Muellbauer, 2022. "Excess Mortality Versus COVID‐19 Death Rates: A Spatial Analysis of Socioeconomic Disparities and Political Allegiance Across U.S. States," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(2), pages 348-392, June.
    15. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    16. Maeno, Yoshiharu, 2016. "Detecting a trend change in cross-border epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 73-81.
    17. Rolf J F Ypma & Tjibbe Donker & W Marijn van Ballegooijen & Jacco Wallinga, 2013. "Finding Evidence for Local Transmission of Contagious Disease in Molecular Epidemiological Datasets," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    18. Saierdaer Aikebaier & Yinghua Song & Moxiao Li & Jiexin Liu, 2022. "Exploring the Impact and Prevention of Epidemics from a New Perspective: COVID-19 Transmission through Express Boxes," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    19. R. S. Sparks & T. Keighley & D. Muscatello, 2011. "Optimal exponentially weighted moving average (EWMA) plans for detecting seasonal epidemics when faced with non-homogeneous negative binomial counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2165-2181.
    20. Stoepker, Ivo V., 2025. "Efficient sampling in disease surveillance through subpopulations: Sampling canaries in the coal mine," Statistics & Probability Letters, Elsevier, vol. 222(C).
    21. Höhle, Michael & Paul, Michaela, 2008. "Count data regression charts for the monitoring of surveillance time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4357-4368, May.
    22. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    23. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.