IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0263991.html
   My bibliography  Save this article

Neo-epidemiological machine learning based method for COVID-19 related estimations

Author

Listed:
  • Mouhamad Bodaghie
  • Farnaz Mahan
  • Leyla Sahebi
  • Hossein Dalili

Abstract

The 2019 newfound Coronavirus (COVID-19) still remains as a threatening disease of which new cases are being reported daily from all over the world. The present study aimed at estimating the related rates of morbidity, growth, and mortality for COVID-19 over a three-month period starting from Feb, 19, 2020 to May 18, 2020 in Iran. In addition, it revealed the effect of the mean age, changes in weather temperature and country’s executive policies including social distancing, restrictions on travel, closing public places, shops and educational centers. We have developed a combined neural network to estimate basic reproduction number, growth, and mortality rates of COVID-19. Required data was obtained from daily reports of World Health Organization (WHO), Iran Meteorological Organization (IRIMO) and the Statistics Center of Iran. The technique used in the study encompassed the use of Artificial Neural Network (ANN) combined with Swarm Optimization (PSO) and Bus Transportation Algorithms (BTA). The results of the present study showed that the related mortality rate of COVID-19 is in the range of [0.1], and the point 0.275 as the mortality rate provided the best results in terms of the total training and test squared errors of the network. Furthermore, the value of basic reproduction number for ANN-BTA and ANN-PSO was 1.045 and 1.065, respectively. In the present study, regarding the closest number to the regression line (0.275), the number of patients was equal to 2566200 cases (with and without clinical symptoms) and the growth rate based on arithmetic means was estimated to be 1.0411 and 1.06911, respectively. Reviewing the growth and mortality rates over the course of 90 days, after 45 days of first case detection, the highest increase in mortality rate was reported 158 cases. Also, the highest growth rate was related to the eighth and the eighteenth days after the first case report (2.33). In the present study, the weather variant in relationship to the basic reproduction number and mortality rate was estimated ineffective. In addition, the role of quarantine policies implemented by the Iranian government was estimated to be insignificant concerning the mortality rate. However, the age range was an ifluential factor in mortality rate. Finally, the method proposed in the present study cofirmed the role of the mean age of the country in the mortality rate related to COVID-19 patients at the time of research conduction. The results indicated that if sever quarantine restrictions are not applied and Iranian government does not impose effective interventions, about 60% to 70% of the population (it means around 49 to 58 million people) would be afflicted by COVID-19 during June to September 2021.

Suggested Citation

  • Mouhamad Bodaghie & Farnaz Mahan & Leyla Sahebi & Hossein Dalili, 2023. "Neo-epidemiological machine learning based method for COVID-19 related estimations," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-33, March.
  • Handle: RePEc:plo:pone00:0263991
    DOI: 10.1371/journal.pone.0263991
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263991
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0263991&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0263991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcus de Barros Braga & Rafael da Silva Fernandes & Gilberto Nerino de Souza Jr & Jonas Elias Castro da Rocha & Cícero Jorge Fonseca Dolácio & Ivaldo da Silva Tavares Jr & Raphael Rodrigues Pinheiro , 2021. "Artificial neural networks for short-term forecasting of cases, deaths, and hospital beds occupancy in the COVID-19 pandemic at the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-27, March.
    2. C. P. Farrington & M. N. Kanaan & N. J. Gay, 2001. "Estimation of the basic reproduction number for infectious diseases from age‐stratified serological survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 251-292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    2. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    3. Steven Abrams & Marc Aerts & Geert Molenberghs & Niel Hens, 2017. "Parametric overdispersed frailty models for current status data," Biometrics, The International Biometric Society, vol. 73(4), pages 1388-1400, December.
    4. Ziv Shkedy & Marc Aerts & Geert Molenberghs & Philippe Beutels & Pierre Van Damme, 2003. "Modelling forces of infection by using monotone local polynomials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 469-485, October.
    5. Nele Goeyvaerts & Niel Hens & Benson Ogunjimi & Marc Aerts & Ziv Shkedy & Pierre Van Damme & Philippe Beutels, 2010. "Estimating infectious disease parameters from data on social contacts and serological status," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 255-277, March.
    6. Muhammad Umar & Zulqurnain Sabir & Muhammad Asif Zahoor Raja & Shumaila Javeed & Hijaz Ahmad & Sayed K. Elagen & Ahmed Khames, 2021. "Numerical Investigations through ANNs for Solving COVID-19 Model," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    7. Schimit, P.H.T. & Monteiro, L.H.A., 2012. "On estimating the basic reproduction number in distinct stages of a contagious disease spreading," Ecological Modelling, Elsevier, vol. 240(C), pages 156-160.
    8. H. J. Whitaker & C. P. Farrington, 2004. "Infections with Varying Contact Rates: Application to Varicella," Biometrics, The International Biometric Society, vol. 60(3), pages 615-623, September.
    9. Steffen Unkel & C. Paddy Farrington & Heather J. Whitaker & Richard Pebody, 2014. "Time varying frailty models and the estimation of heterogeneities in transmission of infectious diseases," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 141-158, January.
    10. Elizabeth Goult & Laura Andrea Barrero Guevara & Michael Briga & Matthieu Domenech de Cellès, 2024. "Estimating the optimal age for infant measles vaccination," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. P. Kriwy, 2012. "Similarity of parents and physicians in the decision to vaccinate children against measles, mumps and rubella," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 57(2), pages 333-340, April.
    12. Wen, Chi-Chung & Chen, Yi-Hau, 2011. "Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1053-1060, February.
    13. Tao Hu & Qingyun Du & Fu Ren & Shi Liang & Denan Lin & Jiajia Li & Yan Chen, 2014. "Spatial Analysis of the Home Addresses of Hospital Patients with Hepatitis B Infection or Hepatoma in Shenzhen, China from 2010 to 2012," IJERPH, MDPI, vol. 11(3), pages 1-13, March.
    14. Kimberly M. Thompson & Cassie L. Odahowski, 2016. "Systematic Review of Measles and Rubella Serology Studies," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1459-1486, July.
    15. Jair Andrade & Jim Duggan, 2021. "A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo," System Dynamics Review, System Dynamics Society, vol. 37(4), pages 283-309, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.