IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226733.html
   My bibliography  Save this article

A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy

Author

Listed:
  • Nadia Khan
  • Barry Schoenike
  • Trina Basu
  • Heidi Grabenstatter
  • Genesis Rodriguez
  • Caleb Sindic
  • Margaret Johnson
  • Eli Wallace
  • Rama Maganti
  • Raymond Dingledine
  • Avtar Roopra

Abstract

Complex neurological conditions can give rise to large scale transcriptomic changes that drive disease progression. It is likely that alterations in one or a few transcription factors or cofactors underlie these transcriptomic alterations. Identifying the driving transcription factors/cofactors is a non-trivial problem and a limiting step in the understanding of neurological disorders. Epilepsy has a prevalence of 1% and is the fourth most common neurological disorder. While a number of anti-seizure drugs exist to treat seizures symptomatically, none is curative or preventive. This reflects a lack of understanding of disease progression. We used a novel systems approach to mine transcriptome profiles of rodent and human epileptic brain samples to identify regulators of transcriptional networks in the epileptic brain. We find that Enhancer of Zeste Homolog 2 (EZH2) regulates differentially expressed genes in epilepsy across multiple rodent models of acquired epilepsy. EZH2 undergoes a prolonged upregulation in the epileptic brain. A transient inhibition of EZH2 immediately after status epilepticus (SE) robustly increases spontaneous seizure burden weeks later. This suggests that EZH2 upregulation is a protective. These findings are the first to characterize a role for EZH2 in opposing epileptogenesis and debut a bioinformatic approach to identify nuclear drivers of complex transcriptional changes in disease.

Suggested Citation

  • Nadia Khan & Barry Schoenike & Trina Basu & Heidi Grabenstatter & Genesis Rodriguez & Caleb Sindic & Margaret Johnson & Eli Wallace & Rama Maganti & Raymond Dingledine & Avtar Roopra, 2019. "A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
  • Handle: RePEc:plo:pone00:0226733
    DOI: 10.1371/journal.pone.0226733
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226733
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226733&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raphaƫl Margueron & Danny Reinberg, 2011. "The Polycomb complex PRC2 and its mark in life," Nature, Nature, vol. 469(7330), pages 343-349, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allegra Angeloni & Skye Fissette & Deniz Kaya & Jillian M. Hammond & Hasindu Gamaarachchi & Ira W. Deveson & Robert J. Klose & Weiming Li & Xiaotian Zhang & Ozren Bogdanovic, 2024. "Extensive DNA methylome rearrangement during early lamprey embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Pedro L. Baldoni & Naim U. Rashid & Joseph G. Ibrahim, 2022. "Efficient detection and classification of epigenomic changes under multiple conditions," Biometrics, The International Biometric Society, vol. 78(3), pages 1141-1154, September.
    3. Rachel K. Lex & Weiqiang Zhou & Zhicheng Ji & Kristin N. Falkenstein & Kaleigh E. Schuler & Kathryn E. Windsor & Joseph D. Kim & Hongkai Ji & Steven A. Vokes, 2022. "GLI transcriptional repression is inert prior to Hedgehog pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Lihu Gong & Xiuli Liu & Lianying Jiao & Xin Yang & Andrew Lemoff & Xin Liu, 2022. "CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Wen Hao Neo & Yiran Meng & Alba Rodriguez-Meira & Muhammad Z. H. Fadlullah & Christopher A. G. Booth & Emanuele Azzoni & Supat Thongjuea & Marella F. T. R. Bruijn & Sten Eirik W. Jacobsen & Adam J. Me, 2021. "Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Xiaozhen Zhao & Yiming Wang & Bingqin Yuan & Hanxi Zhao & Yujie Wang & Zheng Tan & Zhiyuan Wang & Huijun Wu & Gang Li & Wei Song & Ravi Gupta & Kenichi Tsuda & Zhonghua Ma & Xuewen Gao & Qin Gu, 2024. "Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Nikhil B. Ghate & Sungmin Kim & Yonghwan Shin & Jinman Kim & Michael Doche & Scott Valena & Alan Situ & Sangnam Kim & Suhn K. Rhie & Heinz-Josef Lenz & Tobias S. Ulmer & Shannon M. Mumenthaler & Wooji, 2023. "Phosphorylation and stabilization of EZH2 by DCAF1/VprBP trigger aberrant gene silencing in colon cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Noe E. Crespo & Alexandra Torres-Bracero & Jessicca Y. Renta & Robert J. Desnick & Carmen L. Cadilla, 2021. "Expression Profiling Identifies TWIST2 Target Genes in Setleis Syndrome Patient Fibroblast and Lymphoblast Cells," IJERPH, MDPI, vol. 18(4), pages 1-27, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.