IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34431-1.html
   My bibliography  Save this article

CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site

Author

Listed:
  • Lihu Gong

    (University of Texas Southwestern Medical Center)

  • Xiuli Liu

    (University of Texas Southwestern Medical Center)

  • Lianying Jiao

    (University of Texas Southwestern Medical Center
    Xi’an Jiaotong University Health Science Center)

  • Xin Yang

    (University of Texas Southwestern Medical Center)

  • Andrew Lemoff

    (University of Texas Southwestern Medical Center)

  • Xin Liu

    (University of Texas Southwestern Medical Center)

Abstract

Polycomb repressive complex 2 (PRC2) plays a key role in maintaining cell identity during differentiation. Methyltransferase activity of PRC2 on histone H3 lysine 27 is regulated by diverse cellular mechanisms, including posttranslational modification. Here, we report a unique phosphorylation-dependent mechanism stimulating PRC2 enzymatic activity. Residue S583 of SUZ12 is phosphorylated by casein kinase 2 (CK2) in cells. A crystal structure captures phosphorylation in action: the flexible phosphorylation-dependent stimulation loop harboring S583 becomes engaged with the catalytic SET domain through a phosphoserine-centered interaction network, stabilizing the enzyme active site and in particular S-adenosyl-methionine (SAM)-binding pocket. CK2-mediated S583 phosphorylation promotes catalysis by enhancing PRC2 binding to SAM and nucleosomal substrates and facilitates reporter gene repression. Loss of S583 phosphorylation impedes PRC2 recruitment and H3K27me3 deposition in pluripotent mESCs and compromises the ability of PRC2 to maintain differentiated cell identity.

Suggested Citation

  • Lihu Gong & Xiuli Liu & Lianying Jiao & Xin Yang & Andrew Lemoff & Xin Liu, 2022. "CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34431-1
    DOI: 10.1038/s41467-022-34431-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34431-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34431-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Siddhant U. Jain & Truman J. Do & Peder J. Lund & Andrew Q. Rashoff & Katharine L. Diehl & Marcin Cieslik & Andrea Bajic & Nikoleta Juretic & Shriya Deshmukh & Sriram Venneti & Tom W. Muir & Benjamin , 2019. "PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Roberta Ragazzini & Raquel Pérez-Palacios & Irem H. Baymaz & Seynabou Diop & Katia Ancelin & Dina Zielinski & Audrey Michaud & Maëlle Givelet & Mate Borsos & Setareh Aflaki & Patricia Legoix & Pascal , 2019. "EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    3. Qi-Long Ying & Jason Wray & Jennifer Nichols & Laura Batlle-Morera & Bradley Doble & James Woodgett & Philip Cohen & Austin Smith, 2008. "The ground state of embryonic stem cell self-renewal," Nature, Nature, vol. 453(7194), pages 519-523, May.
    4. Raphaël Margueron & Danny Reinberg, 2011. "The Polycomb complex PRC2 and its mark in life," Nature, Nature, vol. 469(7330), pages 343-349, January.
    5. Alexei Brooun & Ketan S. Gajiwala & Ya-Li Deng & Wei Liu & Ben Bolaños & Patrick Bingham & You-Ai He & Wade Diehl & Nicole Grable & Pei-Pei Kung & Scott Sutton & Karen A. Maegley & Xiu Yu & Al E. Stew, 2016. "Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    6. Sarah Cooper & Anne Grijzenhout & Elizabeth Underwood & Katia Ancelin & Tianyi Zhang & Tatyana B. Nesterova & Burcu Anil-Kirmizitas & Andrew Bassett & Susanne M. Kooistra & Karl Agger & Kristian Helin, 2016. "Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    7. Zhonghua Gao & Pedro Lee & James M. Stafford & Melanie von Schimmelmann & Anne Schaefer & Danny Reinberg, 2014. "An AUTS2–Polycomb complex activates gene expression in the CNS," Nature, Nature, vol. 516(7531), pages 349-354, December.
    8. Neil Justin & Ying Zhang & Cataldo Tarricone & Stephen R. Martin & Shuyang Chen & Elizabeth Underwood & Valeria De Marco & Lesley F. Haire & Philip A. Walker & Danny Reinberg & Jon R. Wilson & Steven , 2016. "Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    9. Raphael Margueron & Neil Justin & Katsuhito Ohno & Miriam L. Sharpe & Jinsook Son & William J. Drury III & Philipp Voigt & Stephen R. Martin & William R. Taylor & Valeria De Marco & Vincenzo Pirrotta , 2009. "Role of the polycomb protein EED in the propagation of repressive histone marks," Nature, Nature, vol. 461(7265), pages 762-767, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Keniry & Natasha Jansz & Linden J. Gearing & Iromi Wanigasuriya & Joseph Chen & Christian M. Nefzger & Peter F. Hickey & Quentin Gouil & Joy Liu & Kelsey A. Breslin & Megan Iminitoff & Tamara B, 2022. "BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Sara Weirich & Albert Jeltsch, 2023. "Limited choice of natural amino acids as mimetics restricts design of protein lysine methylation studies," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    3. Takeo Kubota & Kazuki Mochizuki, 2016. "Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders," IJERPH, MDPI, vol. 13(5), pages 1-12, May.
    4. Shiran Bar & Dan Vershkov & Gal Keshet & Elyad Lezmi & Naama Meller & Atilgan Yilmaz & Ofra Yanuka & Malka Nissim-Rafinia & Eran Meshorer & Talia Eldar-Geva & Nissim Benvenisty, 2021. "Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Cuifang Liu & Juan Yu & Aoqun Song & Min Wang & Jiansen Hu & Ping Chen & Jicheng Zhao & Guohong Li, 2023. "Histone H1 facilitates restoration of H3K27me3 during DNA replication by chromatin compaction," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Allegra Angeloni & Skye Fissette & Deniz Kaya & Jillian M. Hammond & Hasindu Gamaarachchi & Ira W. Deveson & Robert J. Klose & Weiming Li & Xiaotian Zhang & Ozren Bogdanovic, 2024. "Extensive DNA methylome rearrangement during early lamprey embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Yan Wang & Binbin Ma & Xiaoxu Liu & Ge Gao & Zhuanzhuan Che & Menghan Fan & Siyan Meng & Xiru Zhao & Rio Sugimura & Hua Cao & Zhongjun Zhou & Jing Xie & Chengqi Lin & Zhuojuan Luo, 2022. "ZFP281-BRCA2 prevents R-loop accumulation during DNA replication," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Pedro L. Baldoni & Naim U. Rashid & Joseph G. Ibrahim, 2022. "Efficient detection and classification of epigenomic changes under multiple conditions," Biometrics, The International Biometric Society, vol. 78(3), pages 1141-1154, September.
    9. Xianchun Lan & Song Ding & Tianzhe Zhang & Ying Yi & Conghui Li & Wenwen Jin & Jian Chen & Kaiwei Liang & Hengbin Wang & Wei Jiang, 2022. "PCGF6 controls neuroectoderm specification of human pluripotent stem cells by activating SOX2 expression," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Rachel K. Lex & Weiqiang Zhou & Zhicheng Ji & Kristin N. Falkenstein & Kaleigh E. Schuler & Kathryn E. Windsor & Joseph D. Kim & Hongkai Ji & Steven A. Vokes, 2022. "GLI transcriptional repression is inert prior to Hedgehog pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Le Tran Phuc Khoa & Wentao Yang & Mengrou Shan & Li Zhang & Fengbiao Mao & Bo Zhou & Qiang Li & Rebecca Malcore & Clair Harris & Lili Zhao & Rajesh C. Rao & Shigeki Iwase & Sundeep Kalantry & Stephani, 2024. "Quiescence enables unrestricted cell fate in naive embryonic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Chet H. Loh & Siebe Genesen & Matteo Perino & Magnus R. Bark & Gert Jan C. Veenstra, 2021. "Loss of PRC2 subunits primes lineage choice during exit of pluripotency," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    13. Wen Hao Neo & Yiran Meng & Alba Rodriguez-Meira & Muhammad Z. H. Fadlullah & Christopher A. G. Booth & Emanuele Azzoni & Supat Thongjuea & Marella F. T. R. Bruijn & Sten Eirik W. Jacobsen & Adam J. Me, 2021. "Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Carolina Gracia-Diaz & Yijing Zhou & Qian Yang & Reza Maroofian & Paula Espana-Bonilla & Chul-Hwan Lee & Shuo Zhang & Natàlia Padilla & Raquel Fueyo & Elisa A. Waxman & Sunyimeng Lei & Garrett Otrimsk, 2023. "Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Xiaozhen Zhao & Yiming Wang & Bingqin Yuan & Hanxi Zhao & Yujie Wang & Zheng Tan & Zhiyuan Wang & Huijun Wu & Gang Li & Wei Song & Ravi Gupta & Kenichi Tsuda & Zhonghua Ma & Xuewen Gao & Qin Gu, 2024. "Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Gintautas Vainorius & Maria Novatchkova & Georg Michlits & Juliane Christina Baar & Cecilia Raupach & Joonsun Lee & Ramesh Yelagandula & Marius Wernig & Ulrich Elling, 2023. "Ascl1 and Ngn2 convert mouse embryonic stem cells to neurons via functionally distinct paths," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Nadia Khan & Barry Schoenike & Trina Basu & Heidi Grabenstatter & Genesis Rodriguez & Caleb Sindic & Margaret Johnson & Eli Wallace & Rama Maganti & Raymond Dingledine & Avtar Roopra, 2019. "A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
    18. Anna Malkowska & Christopher Penfold & Sophie Bergmann & Thorsten E. Boroviak, 2022. "A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Shengyong Yu & Chunhua Zhou & Jiangping He & Zhaokai Yao & Xingnan Huang & Bowen Rong & Hong Zhu & Shijie Wang & Shuyan Chen & Xialian Wang & Baomei Cai & Guoqing Zhao & Yuhan Chen & Lizhan Xiao & He , 2022. "BMP4 drives primed to naïve transition through PGC-like state," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Valdemaras Petrosius & Pedro Aragon-Fernandez & Nil Üresin & Gergo Kovacs & Teeradon Phlairaharn & Benjamin Furtwängler & Jeff Op De Beeck & Sarah L. Skovbakke & Steffen Goletz & Simon Francis Thomsen, 2023. "Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34431-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.